

Phospho-Thr292 MEK 1 Antibody

Affinity purified rabbit polyclonal antibody Catalog # AN1016

Specification

Phospho-Thr292 MEK 1 Antibody - Product Information

Application WB
Primary Accession Q02750
Reactivity Human

Predicted Bovine, Human, Mouse, Monkey, Rat

Host Rabbit
Clonality polyclonal
Calculated MW 45 KDa

Phospho-Thr292 MEK 1 Antibody - Additional Information

Gene ID 5604
Gene Name MAP2K1

Other Names

Dual specificity mitogen-activated protein kinase kinase 1, MAP kinase kinase 1, MAPKK 1, MKK1, ERK activator kinase 1, MAPK/ERK kinase 1, MEK 1, MAP2K1, MEK1, PRKMK1

Target/Specificity

Synthetic phospho-peptide corresponding to amino acid residues surrounding Thr292 conjugated to KLH.

Dilution

WB~~ 1:1000

Format

Prepared from rabbit serum by affinity purification via sequential chromatography on phosphoand dephosphopeptide affinity columns.

Antibody Specificity

Specific for the ~45k MEK 1 protein phosphorylated at Thr292 in Western blots.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

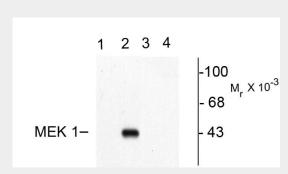
Precautions

Phospho-Thr292 MEK 1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice

Phospho-Thr292 MEK 1 Antibody - Protocols



161. 000.070.1900 Fax. 000.070.1999

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Phospho-Thr292 MEK 1 Antibody - Images

Western blot of recombinant wild type and mutant MEK 1 showing immunolabeling of the \sim 45k MEK-1 protein phosphorylated at Thr292. Lanes 1 and 2 are WT MEK 1 and Lanes 3 and 4 are mutant MEK 1 (T292A). MAP kinase was coexpressed in the samples run in Lanes 2 and 4.

Phospho-Thr292 MEK 1 Antibody - Background

MEK 1 (MAP kinase kinase, also known as MKK) is an integral component of the MAP kinase cascade that regulates cell growth and differentiation (Ahn, 1993; Chong et al., 2003). This pathway also plays a key role in synaptic plasticity in the brain (Adams and Sweatt, 2002). Activated MEK 1 acts as a dual specificity kinase phosphorylating both a threonine and a tyrosine residue on MAP kinase (Kyriakis et al., 1991; Seger et al., 1991; Crews et al., 1992). Conversely, there also appears to be a feedback phosphorylation of MEK 1 by MAP kinase. The sites on MEK 1 that are phosphorylated by MAP kinase are Thr292 and Thr386 (Mansour et al., 1994).

Phospho-Thr292 MEK 1 Antibody - References

Adams JP, Sweatt JD (2002) Molecular psychology: Roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol 42:135-163.

Ahn NG (1993) The MAP kinase cascade. Discovery of a new signal transduction pathway. Mol Cell Biochem 127-128:201-209.

Chong H, Vikis HG, Guan KL (2003) Mechanisms of regulating the Raf kinase family. Cellular Signalling 15:463-469.

Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258:478-480.

Kyriakis JM, Brautigan DL, Ingebritsen TS, Avruch J (1991) pp54 Microtubule-associated protein-2 kinase requires both tyrosine and serine/threonine phosphorylation for activity. J Biol Chem 266:10043-10046.

Mansour SJ, Resing KA, Candi JM, Hermann AS, Gloor JW, Herskind KR, Wartmann M, Davis RJ, Ahn NG (1994) Mitogen-activated protein (MAP) kinase phosphorylation of MAP kinase kinase: Determination of phosphorylation sites by mass spectrometry and site-directed mutagenesis. J Biochem (Tokyo) 116:304-314.

Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlien

RL, Cobb MH, Krebs EG (1991) Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophos-phorylation on both tyrosine and threonine residues: Implications for their mechanism of activation. Proc Natl Acad Sci USA 88:6142-6146.