

NMDA Receptor, NR2C Subunit Antibody

Affinity purified rabbit polyclonal antibody Catalog # AN1057

Specification

NMDA Receptor, NR2C Subunit Antibody - Product Information

Application WB
Primary Accession O00961

Reactivity Human, Mouse, Rat

Host Rabbit
Clonality polyclonal
Calculated MW 140 KDa

NMDA Receptor, NR2C Subunit Antibody - Additional Information

Gene ID 24411
Gene Name GRIN2C

Other Names

Glutamate receptor ionotropic, NMDA 2C, GluN2C, Glutamate [NMDA] receptor subunit epsilon-3, N-methyl D-aspartate receptor subtype 2C, NMDAR2C, NR2C, Grin2c

Target/Specificity

Fusion protein from the N-terminal region of the NR2C subunit.

Dilution

WB~~ 1:1000

Format

Prepared from rabbit serum by affinity purification using a column to which the fusion protein immunogen was coupled.

Antibody Specificity

Specific for the \sim 140k NR2C subunit of the NMDA receptor. Also labels the \sim 180k NR2A and the \sim 180k NR2B subunits of the NMDA receptor. Immunolabeling is blocked by preadsorption of antibody with the immunogen that was used to generate the antibody.

Storage

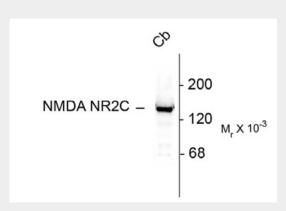
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

NMDA Receptor, NR2C Subunit Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice


NMDA Receptor, NR2C Subunit Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

NMDA Receptor, NR2C Subunit Antibody - Images

Western blot of 10 ug of rat cerebellar lysate showing specific immunolabeling of the \sim 140k NR2C subunit of the NMDA receptor.

NMDA Receptor, NR2C Subunit Antibody - Background

The ion channels activated by glutamate that are sensitive to N-methyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer's, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The rat NMDAR1 (NR1) was the first subunit of the NMDAR to be cloned. The NR1 protein can form NMDA activated channels when expressed in Xenopus oocytes but the currents in such channels are much smaller than those seen in situ. Channels with more physiological characteristics are produced when the NR1 subunit is combined with one or more of the NMDAR2 (NR2 A-D) subunits. The NR2C subunit of the receptor is thought to influence the NMDAR conductance level (Ebralidze et al., 1996).

NMDA Receptor, NR2C Subunit Antibody - References

Alvestad RM, Grosshans DR, Coultrap SJ, Nakazawa T, Yamamoto T, Browning MD (2003) Tyrosine dephosphorylation and ethanol inhibition of N-methyl-D-aspartate receptor function. J Biol Chem 278:11020-11025.

Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25:571-577.

Ebralidze AK, Rossi DJ, Tonegawa S, Slater NT (1996) Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci 16:5014-5025. Grosshans DR, Clayton DA, Coultrap SJ, Browning MD (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5:27-33.

Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in

hippocampal neurons. Science 243:1721-1724.

Lu W-Y, Xiong Z-G, Lei S, Orser BA, Browning MD, MacDonald JF (1999) G-protein coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nature Neurosci 2:331-338. Snell LD, Nunley KR, Lickteig RL, Browning MD, Tabakoff B, Hoffman PL (1996) Regional and subunit

specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Mol Brain Res 40:71-78.

Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43:335-358.