

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody Rabbit Polyclonal Antibody Catalog # AN1285

Specification

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Product Information

Application Primary Accession Reactivity Host Clonality Calculated MW WB <u>O8R493</u> Mouse Rabbit Polyclonal 55809

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Additional Information

Gene ID108015Gene NameChrnb4Target/SpecificityFusion protein from the cytoplasmic loop of the beta 4 subunit of rat nAChR

Dilution WB~~ 1:1000

Format Antigen Affinity Purified from Pooled Serum

Storage

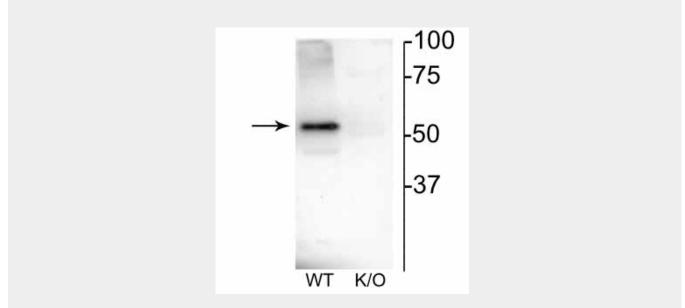
Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping Blue Ice

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety

<u>Cell Culture</u>

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Images

Western blot of mouse habenula lysate showing specific immunolabeling of the ${\sim}52$ kDa nAChR $\beta4$ protein.

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Background

Nicotinic acetylcholine receptors (nAChRs) are ionotropic, cholinergic receptors that are divided into 2 types; muscle type and neuronal type. Neuronal nAChRs are pentameric ion channels consisting of 5 identical (homopentamers) or different (heteropentamers) subunits. Heteropentameric neuronal nAChRs mediate fast synaptic transmission in the autonomic nervous system. The predominant hetero-oligomeric nAChR in the CNS contain the subunits $\alpha 4\beta 2$, whereas $\alpha 3\beta 4$ prevail in the PNS. However, the expression of these subunits varies not only by region but also during development (Scholze et al 2011). In the brain, $\beta 2$ -containing receptors greatly outnumber receptors that contain $\beta 4$ (