

GNAS Antibody (C-term) Blocking peptide

Synthetic peptide Catalog # BP13065b

Specification

GNAS Antibody (C-term) Blocking peptide - Product Information

Primary Accession

Q5FWY2

GNAS Antibody (C-term) Blocking peptide - Additional Information

Gene ID 2778

Format

Peptides are lyophilized in a solid powder format. Peptides can be reconstituted in solution using the appropriate buffer as needed.

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

GNAS Antibody (C-term) Blocking peptide - Protein Information

Name GNAS {ECO:0000313|EMBL:AAH89157.2}

Cellular Location

Cell membrane {ECO:0000256|ARBA:ARBA00004193}; Lipid-anchor {ECO:0000256|ARBA:ARBA00004193}. Membrane {ECO:0000256|ARBA:ARBA00004635}; Lipid-anchor {ECO:0000256|ARBA:ARBA00004635}

GNAS Antibody (C-term) Blocking peptide - Protocols

Provided below are standard protocols that you may find useful for product applications.

Blocking Peptides

GNAS Antibody (C-term) Blocking peptide - Images

GNAS Antibody (C-term) Blocking peptide - Background

Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The Gs protein is involved in hormonal regulation of adenylate cyclase: it activates the cyclase in response to beta-adrenergic stimuli. Alternative splicing of downstream exons of the GNAS gene is observed, which results in different forms of the stimulatory G protein alpha subunit, a key element of the classical signal transduction pathway linking receptor-ligand interactions with the activation of adenylyl cyclase and a variety of cellular

reponses. Multiple transcript variants have been found for this gene, but the full-length nature and/or biological validity of some variants have not been determined. Mutations in this gene result in pseudohypoparathyroidism type 1a, pseudohypoparathyroidism type 1b, Albright hereditary osteodystrophy, pseudopseudohypoparathyroidism, McCune-Albright syndrome, progressive osseus heteroplasia, polyostotic fibrous dysplasia of bone, and some pituitary tumors.