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Fig. 4 Histone-modifying enzymes. Schematic of 
post-translational modification of histone proteins (4).

Fig. 5 DNA damage response. The red xʼs represent 
replication blocks, and the red arrow indicates the direction 
of movement of replication helicases and polymerases. Open 
circles containing ʻʻPʼʼ represent phosphate, while gray filled 
circles represent ubiquitin (5).
ATM is activated in response to double-strand breaks (DSBs). 
Mre11-Rad50-Nbs1 (MRN) mediator complex acts as a DSB sen-
sor for ATM and recruits it to broken DN A molecules. ATM exists 
as inactive dimers that, when recruited to DSBs, dissociate and 
autophosphorylate on multiple residues thought to be impor-
tant for maintaining ATM activation. The MRN complex is also 
a substrate of ATM. At the site of DNA damage, H2AX becomes 
phosphorylated by ATM, ATR, and DNA PK. This phosphorylation 
then directly recruits Mdc1, which acts to amplify H2AX phos-
phorylation, possibly by tethering ATM or preventing H2AX de-
phosphorylation. Mdc1 and H2AX allow the recruitment of many 
additional factors to sites of damage. Mdc1 phosphorylation also 
sets in motion polyubiquitination at sites of DSBs. Phosphoryla-
tion of Mdc1 recruits an E3 ubiquitin ligase, Ubc13-Rnf8, which 
ubiquitinates H2AX and possibly other proteins to then recruit 
53BP1 and the Brca1 ʻʻAcomplexʼʼ the latter through the UIM 
domains of its Rap80 component. Ubiquitin foci at IRIFs depend 
upon Ubc13, Rnf8, and Brca1, itself a ubiquitin ligase. DNA 
damage results in activation of p53 leading to cell-cycle arrest, 
senescence, or apoptosis.
The single-strand binding protein complex RPA plays two critical 
roles: it recruits the ATR protein through its regulatory subunit 
ATRIP, and recruits and activates the Rad17 clamp loader which 
then loads the PCNA-related 911 (Rad9-Rad1-Hus1) complex 
onto DNA. The colocalization of 911 and ATR-ATRIP allows in-
teraction at damage sites. ATR phosphorylates Rad17 and 911, 
which is important for downstream signaling (5).
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Figure    Target        Tissue/Cell line            Cat#
A. JHDM2a Human hepatocarcinoma AP1193a
B. JMJD3 Human brain tissue AP1022a
C. JMJD1C   Human placenta AP2582a
D. HDAC9 Human breast carcinoma AP1109b 
E. Histone H3 Human hepatocarcinoma AP1050a
F. MSK2 Mouse fibroblasts (10T1/2) AP7011a
G. Aurora C Human carcinoma (HeLa) AP7000d
H. JMJD3 (mouse) Human kidney (293) AP1022b
I. Aurora C Human kidney (293) AP7000d
J. MSK2 Human placenta AP7011a
K. JMJD2D Human carcinoma (HeLa) AT1028b
L. PRMT5 Human carcinoma (HeLa) AP1007d
M. MLL3 Human hepatocarcinoma AP6184a
N. CBX5 Human carcinoma (HeLa) AP1411a

SAHSAH
hydrolase

Methylated DNA
Methylated RNA
Methylated Histone

B6

DHF

Folate

B12
Betaine

Spermidine

Spermidine
putrescine

Choline

hCys

Cys

Methionine

MTHF

MTA

MetTR-1-P Adenine
DNA synthesis

dSAM

ATP

ATP

SAM

ME

ME ME

SAM SUB

MT

SUB

- Epigenetic changes

Inorganic As

Methylated As species

Fig. 8  Clustering analysis of histone marks changes on human promoters. Myc transcription factor binds to over 10–15% 
of all promoter regions. Myc recruits histone acetyl-transferases and induces hyper-acetylation of histones H3 and H4. Quantitative chromatin immuno-
precipitation (qChIP) was used to profile lysine-acetylation and -methylation marks modulated by Myc at promoters in human B-cell line, expressing c-myc 
transgene. Based on unbiased qChIP clustering analysis, two main clusters were identified (I and II), distinguished mainly through the opposite regulation 
of H2AK5, H4K16ac, and H4K12ac. The majority of promoters are segregated into two sub-clusters within cluster I (I.a and I.b). Sub-cluster I.a showed no 
significant induction of the main Myc-responsive marks. Sub-cluster I.b, contained promoters at which Myc consistently induced most responsive marks 
(red gradient) (9).

Selected Abgent Products

S.Gramatikova 2 PhD, K.Gramatiko� 2PhD, J.Mountzouris 1PhD, T.Gilliam 1 & C.Wu 1PhD

(1) Abcepta Inc., 10320 Camino Santa Fe, Ste G, San Diego, CA 92121
(2) Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037

Histone Modification Survey

DNA Repair

Profiling & Disease

Fig.1  Methionine metabolism and its 
role in epigenetic modifications. 
DHF, dihydrofolate; dSAM, decarboxylated S-
adenosylmethionine; hCys, homocysteine; ME, 
methyl group; MetTR-1-P, 5-methylthioribose-1
-phosphate; MT, methyltransferase; MTA, methyl-
thioadenosine; MTHF, methylenetetrahydrofolate; 
SAH, S-adenosylhomocysteine; SAM,  S-adenosyl-
methionine; SUB, substrate; As, arsenic (1).

Fig.2  Reaction scheme of histone 
acetylation (a) and cytosine methy-
lation (b). HAT, histone acetyltransferase; 
HDAC, histone deacetylase; CoA-SH, coenzyme 
A; CoA-S-Acet, acetylcoenzyme A; DNMT, DNA 
methyltransferase; SAM, S-adenosylmethionine; 
SAH, S-adenosylhomocysteine (3).

Fig.3  Schematic representation of 
the epigenetic changes in chromatin 
organization that influence gene ex-
pression. Genes are expressed when the chro-
matin is open: (  ) cytosine unmethylated, (∫) his-
tones acetylated. Genes are switched off when the 
chromatin is condensed: (  ) cytosine methylated, 
histones deacetylated (3).

Fig. 7  Distribution of major mixed lineage leukemia (MLL) fusion partner genes in 
de novo childhood and adult leukaemias. MLL rearrangements are found in approximately 5% of acute lymphoblastic 
leukaemias (ALL), approximately 5–10% of acute myeloid leukaemias (AML) and all cases of mixed lineage leukaemias. 
Major MLL fusion partner genes are AF4, which is predominantly found in ALL; AF9, predominantly found in AML; and 
ENL, which is found in both ALL and AML (8).
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Fig. 6 Histone methylation and transcription. RNA transcription may be initiated when a promoter 
region carries histone H3 lysine 4 (K4) methylation marks, and extends when an open-reading frame region carries a 
histone H3 lysine 36 (K36). Histone H3 lysine 79 (K79) methylation marks have a broad distribution across promoter 
and open reading frame regions (a). Mixed lineage leukemia (MLL) is a member of a multiprotein complex that mediates 
methylation of K4 within the promoter region of genes occupied by RNA polymerase II (b). A hypothetical function for MLL 
fusion proteins is presented (c). MLL fusions may recruit the K79 methyltransferase DOT1L, which allows K79 methylation 
of the HoxA cluster and aberrant expression of HoxA cluster genes (8).
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JMJD1A: jumonji domain containing 1A; jumonji C domain-containing histone demethylase 2A; testis-specific protein A
JMJD3: jumonji domain containing 3; histone lysine demethylase 
JMJD1C: jumonji domain containing 1C; thyroid hormone receptor interactor 8; thyroid receptor interacting protein 8
HDAC9: histone deacetylase 9; MEF-2 interacting transcription repressor (MITR) protein; histone deacetylase 7
Dnmt3a: DNA (cytosine-5-)-methyltransferase 3 alpha; DNA MTase HsaIIIA; DNA cytosine methyltransferase 3 alpha
AURKC: aurora kinase C; aurora-C; aurora/IPL1-related kinase 3; serine/threonine kinase 13 
MSK2: mitogen- and stress-activated protein kinase 2; ribosomal protein S6 kinase alpha 4
JMJD2D: jumonji domain containing 2D 
PRMT5: protein arginine methyltransferase 5; HMT1 hnRNP methyltransferase-like 5; SKB1 homolog; HRMT1L5
MLL3: myeloid/lymphoid or mixed-lineage leukemia 3; ALR-like protein; histone-lysine N-methyltransferase
CBX5: chromobox homolog 5 (HP1 alpha homolog, Drosophila); HP1-ALPHA; HP1Hs alpha; antigen p25
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