

Survey NEURAL CHAPERONES

S.Gramatikova² PhD, K.Gramatikoff ²PhD, J.Mountzouri³ PhD, T.Gilliam ¹ & C.Wu ¹PhD

(1) Abcepta Inc., 10320 Camino Santa Fe, Ste G, San Diego, CA 92121 (2) Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037

ABGENT has hundreds of neuroscience antibodies which cover key targets for neurogenesis, neurotransmitters, neural development/differentiation, and neural degeneration. Visit www.abgent.com for a complete listing.

Figure	e Target	Tissue/Cell line	Cat#
Α.	CLC4	Retinal cells	AP6329f
В.	MIB1	Human carcinoma (HeLa)	AP2172a
C.	Nestin	Human carcinoma (HeLa)	AP2020b
D.	LRRK2	Tau-stable SY5Y	AP7099h
Е.	DCLK1	Human hepatocarcinoma	AP7219b
F.	LRP5	Human hepatocarcinoma	AP6157a
G.	APP	Transfected 293T cells	AP6306a
Н.	NSE	Y79 cells	AP2780a
Ι.	NTF3	Mouse brain	AP7763b
J.	NTRK1	Transfected 293T cells	AP7686d
к.	Neurogenin 3	Mouse liver	AP2024a
L.	PSEN2	Mouse kidney	AP6305b
М.	CERK	Mouse heart	AP7088b

Mitochondrial kinase PINK1

۲

Selected Abgent Products

Chaperones

Misfolded protein O Neurotransmitter Mative protein Clathrin

Fig. 1 Role of molecular chaperones in cellular processes. Molecular chaperones facilitate protein folding and prevent protein aggregation. They also regulate autophagy, vesicle fusion, signal transduction, apoptosis and proteasomal degradation. AIF, apoptosis inducing factor; ER, endoplasmic reticulum; HSF1, heat shock transcription factor 1; LAMP, lysosomal-associated membrane protein; ROS, reactive oxygen species (1).

Molecular chaperones associated with protein-conformational disorders

Neurodegenerative disease	Disease genes	Chaperones involved	Lesions
Parkinson's disease	∝-Synuclein, Parkin, UCHL1, PINK1, DJ1, HTRA2, LRRK2	HSP70 , HSP40, HSP90, HSC70, CDC37, TRAP1, 14-3-3, HSPA9, CHIP	Intracellular Lewy bodies
Alzheimer's disease	APP, Presenilin 1, Presenilin 2	HSP72 , HSP28, HSP27 , HSP90	Extracellular senile plaques Intracellular neurofibrilary tangles
Dementia with Lewy bodies	α-Synuclein	HSP27 , HSP40, HSP60, HSP70, HSP90, HSPA5	Intracellular Lewy bodies
Familial amyotropic lateral sclerosis	SOD1	HSC70	Intracellular inclusions
Huntington's disease	Huntingtin	HSP40, HSP70	Mutant huntingtin
Spinocerebellar ataxias	Ataxins	HSP40 , HSP70	Mutant ataxin
Spinal and bulbar muscular atrophy	Androgen receptor	HSP70	Mutant androgen receptor

Table 1. Neurodegenerative disorders and related chaperones. Many neurodegenerative disorders are associated with degeneration and death of neuronal populations due to the accumulation of aggregated or misfolded proteins (14). Molecular chaperones may provide the first line of defence against protein aggregate formation. UCHL1, ubiquitin carboxy-terminal hydrolase L1; PINK1, PTEN-induced kinase 1; DJ1, Parkinson disease (autosomal recessive, early onset) 1; HTRA2, serine peptidase 2; LRRK2, leucine-rich repeat kinase 2); HSP, heat shock protein; HSC70, heat shock cognate 70; CDC37, cell division cycle 37 homolog (S. cerevisiae); TRAP1, TNF receptor-associated protein 1; 14-3-3, 14-3-3 protein beta/alpha; CHIP, STIP1 homology and U-box containing protein 1; APP, amyloid precursor protein; SOD 1, superoxide dismutase 1 (1-11).

versible cellular damage and death. I-IV, mitochondial electron transport chain complexes I-IV; NO, nitric oxide; ROS, reactive oxygen species; UCHL1, ubiquitin carboxy-terminal esterase L1; HTRA2, serine peptidase 2; **TRAP1**, TNF receptor-associated protein 1; **DJ1**, Parkinson disease (autosomal recessive, early onset) 1.

Fig.3 Protein signaling and neuroprotective mechanisms of PINK1. The signaling pathways and biological processes are highlighted in yellow (a). PTEN, phosphatase and tensin homolog; AKT, v-akt murine thymoma viral oncogene homolog; JNK, mitogen-activated protein kinase 8; MKK*, mitogen-activated protein kinase s3, -4, -6, -7. PI3K, phosphatidylinositol 3-kinase; p38 y, p38 mitogen-activated protein kinase, isoform gamma; MKK*, mitogen-activated protein kinase kinase 3, -4, -6, -7; JIP1, JNK-interacting protein 1; DAXX, death-domain associated protein; NF-KB, nuclear factor kappa-B. ABGENT's PINK1 monoclonal antibody # AM6406a was applied for immunohistochemistry of hepatocarcinoma tissue (b), PINK1 detection in brain tissue (c) and in transfected 293 cells (d). For more PINK1-related products, visit www.abgent.com.

PINK1 in Parkinson's Disease

UBL

Parkin

Gene locus	Chromosome	Gene name	Association	Form of Parkinsonism
PARK1 & PARK4	4q21.3-q22 & 4p15	SNCA ($lpha$ -Synuclein)	Mutations	Autosomal dominant
PARK2	6q25.2-q27	PARK2 (Parkin)	Mutations	Autosomal recessive early-onset
PARK3	2p13	SPR (Sepiapterin reductase)	DNA polymorphism	Autosomal dominant
PARK5	4p14	UCHL1 (Ubiquitin thiolesterase)	Mutations	Autosomal dominant
PARK6	1p36.12	PINK1 (PTEN-induced kinase 1)	Mutations	Autosomal recessive early-onset
PARK7	1p36	DJ1 (PD protein 7)	Mutations	Autosomal recessive early-onset
PARK8	12q12	LRRK2 (Leucine-rich repeat kinase 2)	Mutations	Autosomal dominant
PARK9	1p36	ATP13A2 (ATPase type 13A2)	Mutations	Autosomal recessive
PARK10	lp	HIVEP3 (HIV enhancer binding protein 3)	DNA polymorphism	Autosomal dominant
PARK11	2q37.1	GIGYF2 (GRB10 interacting GYF protein 2)	Mutations	Autosomal dominant
PARK12	Xq21-q25	PARK12	DNA polymorphism	X-linked
PARK13	2p13.1	HTRA2 (Serine peptidase 2)	Mutations	Autosomal dominant
PARK14	22q13.1	PLA2G6 (Phospholipase A2)	Mutations	Idiopathic
PARK15	22q11.2-qter	FBX07 (F-box protein 7)	Mutation	Autosomal recessive

Table 2. Loci and genes associated with Parkinson's disease (PD). In addition to the table, polymorphisms or mutations in NR4A2 (nuclear receptor subfamily 4, group A, member 2), NDUFV2 (NADH dehydrogenase flavoprotein 2), ADH3 (alcohol dehydrogenase 1C), FGF20 (fibroblast growth factor 20), GBA (β-alucosidase), and MAPT (microtubule-associated protein tau) genes have been associated with susceptibility to PD (OMIM, 4).

RING2

Tumor supressor

IBR

RING1

Product Abbreviations

CLCN4: chloride channel 4

- MIB1: mindbomb homolog 1; DAPK-interacting protein 1; ubiquitin ligase mind bomb; ubiquitin ligase protein MIB1 LRRK2: leucine-rich repeat kinase 2; augmented in rheumatoid arthritis 17; PARK8 DCLK 1: doublecortin-like kinase 1; doublecortin and CaM kinase-like 1 LRP5: low density lipoprotein receptor-related protein 5; exudative vitreoretinopathy 1 APP: amyloid beta (A4) precursor protein; A4 amyloid protein; amyloid-beta protein; beta-amyloid peptide NSE: enolase 2 (gamma, neuronal); 2-phospho-D-glycerate hydrolyase; neurone-specific enolase
- NTF3: neurotrophin 3
- NTRK 1: neurotrophic tyrosine kinase, receptor, type 1; oncogene TRK; tyrosine kinase receptor A
- **PSEN2**: presenilin 2 (Alzheimer disease 4); Alzheimer's disease 3-like
- **CERK**: ceramide kinase; lipid kinase LK4

References

1. Muchowski PJ and Wacker JL. (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 6(1), pp.11-22.

2. Greggio E and Singleton A. (2007) Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Rev Proteomics. 4(6), pp.783-792.

3. Fitzgerald JC and Plun-Favreau H. (2008) Emerging pathways in genetic Parkinson's disease: autosomal-recessive genes in Parkinson's disease-a common pathway? FEBS J. 275(23), pp.5758-5766.

4. Moore DJ, West AB, Dawson VL and Dawson TM. (2005) Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci.28, pp.57-87.

5. Abou-Sleiman PM, Muqit MM and Wood NW. (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci. 7(3), pp.207-219.

6. Mills RD, Sim CH, Mok SS, Mulhern TD, Culvenor JG and Cheng HC. (2008) Biochemical aspects of the neuroprotective mecha-nism of PTEN-induced kinase-1 (PINK1). J Neurochem. 105(1), pp.18-33.

7. Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X and Zhang Z. (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest. 119(3), pp.650-660.

8. Luo GR, Chen S and Le WD. (2007) Are heat shock proteins therapeutic target for Parkinson's disease? Int J Biol Sci. 3(1), pp.20-26.

9. McLear JA, Lebrecht D, Messer A and Wolfgang WJ. (2008) Combinational approach of intrabody with enhanced Hsp70 expres-sion addresses multiple pathologies in a fly model of Huntington's disease. FASEB J. 22(6), pp.2003-2011.

13. Pridgeon JW, Olzmann JA, Chin LS and Li L. (2007) PINK1 Protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5(7):e172.