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ABGENT has hundreds of neuroscience antibodies which cover key targets for neurogenesis, neurotransmitters, Chﬂ perones
neural development/differentiation, and neural degeneration. Visit www.abgent.com for a complete listing.
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codes a serine/threonine protein kinase that localizes fo mitochondria.
Mutations in PINK1 cause PARK6 familial Parkinson’s disease (PD) and
provide the most direct link between PD and mitochondria (4-6, 8, 12,
13).

The mitochondrial pathway is a main pathway to parkin-
sonism. Impaired oxidafive phosphorylation and decreased complex |
activity in PD leads to reactive oxygen species formation and oxidative
stress. In addition, there is loss of mitochondrial membrane potential.

This leads o opening of the mitochondrial permeability transition pore

(mPTP), release of cytochrome c in the cytosol, and activation of mi- ~ \"=20%/ X\ ™ 0 ) e PI3K

tochondrial dependent apoptosis resulfing in caspase activation and

cell death. Recessive-inherited genes, such as PINKI, DJ1 (Parkinson’s

disease protein 7) and HTRA2 (HtrA serine peptidase 2), might all R

have neuroprotective effects against the development of mitochondrial (P) R

dyslfunttion. Parkin has also been shown to inhibit the release of cy- Neurite outgrowth IJNK Apoptosis |F—— @ —] @ PKB/Akt ———— JNK

tochrome ¢.

Another main pathway of cell foxicity is the ubiquitin pathway. /\ \

It involves cu-synuclein, misfolded proteins and aggregation. These

proteins are ubiquitinated and initially degraded by the ubiquitin- bt NF-«<B

proteasome system, in which Parkin has a crucial role. The proteins » @ — q

PINK1, Parkin, and DJ1 form functional ubiquitin E3 ligase complex to

promote degradation of un/misfolded proteins (7). There is accumula-

tion and failure of clearance by the ubiquitin-proteasome system over a
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versible cellular damage and death. 11V, mitochondial electron trans- 8¢ d

port chain complexes I-IV; NO, nitric oxide; ROS, reactive oxygen
species; UCHLT, ubiquitin carboxy-ferminal esterase L1; HTRA2,
serine peptidase 2; TRAP1, TNF receptor-ussociated protein 1; DJ1,
Parkinson disease (autosomal recessive, early onset) 1.
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Fig.3 Protein signaling and neuroprotective mechanisms of PINK1. The signaling pathways and biological processes are highlighted in yellow (e). PTEN, phosphatase
and fensin homolog; AKT, v-akt murine thymoma viral oncogene homolog; JNK, mitogen-uctivated protein kinase 8; MKK™, mitogen-activated protein kinase kinases 3, -4, -6, -7. PI3K, phos-
phatidylinositol 3-kinase; p38y, p38 mitogen-uctivated protein kinase, isoform gamma; MKK*, mitogen-uctivated protein kinase kinase 3, -4, -6, -7; JIP1, INK-interacting protein 1; DAXX,
death-domain associated protein; NF-icB, nuclear factor kappa-B. ABGENT's PINKT monoclonal anibody # AM6406a was applied for immunohistochemistry of hepatocarcinoma tissue (b), PINK1
detection in brain fissue (¢) and in transfected 293 cells (d). For more PINK1-related products, visit www.abgent.com.
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Product Abbreviations

Gene locus Chromosome Gene name Association Form of Parkinsonism
PARK1 & PARK4 4q21.3-922 & 4p15 SNCA (o-Synudlein) Mutations Autosomal dominant

PARK2 6925.2-q27 PARK2 (Parkin) Mutations Autosomal recessive early-onset
PARK3 2p13 SPR (Sepiapterin reductase) DNA polymorphism Autosomal dominant

PARKS 4p14 UCHLT (Ubiquitin thiolesterase) Mutations Autosomal dominant

PARK6 1p36.12 PINKT (PTEN-induced kinase 1) Mutations Autosomal recessive early-onset
PARK7 1p36 DJ1 (PD protein 7) Mutations Autosomal recessive early-onset
PARKS 12912 LRRK? (Leucine-rich repeat kinase 2) Mutations Autosomal dominant

PARK9 1p36 ATP13A2 (ATPase type 13A2) Mutations Autosomal recessive

PARK10 Ip HIVEP3 (HIV enhancer binding protein 3) | DNA polymorphism Autosomal dominant

PARKT1 29371 GIGYF2 (GRB10 interacting GYF protein 2) | Mutafions Autosomal dominant

PARK12 Xq21-925 PARK12 DNA polymorphism X-linked

PARK13 2p13.] HTRA2 (Serine peptidase 2) Mutations Autosomal dominant

PARK14 22q13.1 PLA2G6 (Phospholipase A2) Mutations Idiopathic

PARK15 22q11.2-gter FBXO7 (F-box protein 7) Mutation Autosomal recessive

PINK1 MTS Kinase catalytic domain
Parkin UBL RING1 IBR RING2
DJ1 DJ1_Pfp | domain

Table 2. Loci and genes associated with Parkinson’s disease (PD). In addition fo the table, polymorphisms or mutations in NR4A2
(nuclear receptor subfamily 4, group A, member 2), NDUFV2 (NADH dehydrogenase flavoprotein 2), ADH3 (alcohol dehydrogenase 1C), FGF20 (fibroblast
growth factor 20), GBA (pB-glucosidase), and MAPT (microtubule-associated protein tau) genes have been associated with susceptibility to PD (OMIM, 4).
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Fig. 4 Domain architecture of PINK1, Parkin and DJ1 proteins. In PD, these autosomal recessive genes are linked to oxidative stress or
mitochondrial dysfunction. MTS, mitochondrial targeting sequence; UBL, ubiquitin-like domain; RING, RING finger motif; IBR, in between ring fingers (4).
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CLCN4: chloride channel 4

MIB 1: mindbomb homolog 1; DAPK-interacting protein 1; ubiquitin ligase mind bomb; ubiquitin ligase protein MIB1
LRRK2: leucine-rich repeat kinase 2; augmented in rheumatoid arthritis 17; PARKS

DCLK1: doublecortin-like kinase 1; doublecortin and CaM kinase-like 1

MILTON MITOFILIN
Apopfosis Modulation of proteolysis LRPS5: low density lipoprotein receptor-related protein 5; exudative vitreoretinopathy 1
APP: amyloid beta (A4) precursor protein; A4 amyloid protein; amyloid-heta protein; beta-amyloid pepfide
NSE: enolase 2 (gomma, neuronal); 2-phospho-D-glycerate hydrolyase; neurone-specific enolase
_..» FABP4 Fatty acid metabolism NTF3: neurotrophin 3
.............. . NTRK 1: neurotrophic tyrosine kinase, receptor, type 1; oncogene TRK; tyrosine kinase receptor A
S N (Cjﬁg:;; Hpaplsis PSEN2: presenilin 2 (Alzheimer disease 4); Alzheimer's disease 3-like
CASP3 Cancer CERK: ceramide kinase; lipid kinase LK4
PTEN Mitochondrial remodeling Refe rences
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Fig. 5 Schematic representation of molecular interactions between PINK]1, its functional partners and
chaperones in Parkinson’s disease. The hiological processes, related to these protein interactions, are highlighted in yellow.
CASP, caspase; Miro, mitochondrial GTPase; PTEN, phosphatase and tensin homolog; Milten, adapter protein; FABP4, fatty acid bind-
ing protein 4 ; Mitofilin, inner membrane protein, mitochondrial; 14-3-3, 14-3-3 protein beta/alpha; HSP40, DnaJ (Hsp40) homolog,

subfamily B, member 6 (8).
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