Anti-RAGE Antibody Catalog # ABO10553 ## **Specification** # **Anti-RAGE Antibody - Product Information** Application WB, IHC Primary Accession O15109 Host Rabbit Reactivity Human, Mouse, Rat Clonality Polyclonal Lyophilized **Description** Rabbit IgG polyclonal antibody for Advanced glycosylation end product-specific receptor(AGER) detection. Tested with WB, IHC-P, IHC-F in Human; Mouse; Rat. #### Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml. ### **Anti-RAGE Antibody - Additional Information** #### Gene ID 177 #### **Other Names** Advanced glycosylation end product-specific receptor, Receptor for advanced glycosylation end products, AGER, RAGE # **Calculated MW** 42803 MW KDa #### **Application Details** Immunohistochemistry(Frozen Section), 0.5-1 μg/ml, Rat, Mouse
 Immunohistochemistry(Paraffin-embedded Section), 0.5-1 μ g/ml, Human, Rat, Mouse, By Heat
 br> Western blot, 0.1-0.5 μ g/ml, Human
 br> #### **Subcellular Localization** Isoform 1: Cell membrane; Single-pass type I membrane protein. ## **Tissue Specificity** Endothelial cells. ## **Protein Name** Advanced glycosylation end product-specific receptor ### Contents Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg Thimerosal, 0.05mg NaN3. #### **Immunogen** A synthetic peptide corresponding to a sequence in the middle region of human RAGE(174-192aa KEQTRRHPETGLFTLQSEL), different from the related mouse and rat sequences by two amino acids. Purification Immunogen affinity purified. **Cross Reactivity**No cross reactivity with other proteins Storage At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time. Avoid repeated freezing and thawing. **Sequence Similarities** Contains 2 Ig-like C2-type (immunoglobulin-like) domains. ## **Anti-RAGE Antibody - Protein Information** **Name AGER** **Synonyms RAGE** ### **Function** Cell surface pattern recognition receptor that senses endogenous stress signals with a broad ligand repertoire including advanced glycation end products, S100 proteins, high-mobility group box 1 protein/HMGB1, amyloid beta/APP oligomers, nucleic acids, phospholipids and glycosaminoglycans (PubMed: 27572515, PubMed:28515150, PubMed:34743181). Advanced glycosylation end products are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes (PubMed: 21565706). These ligands accumulate at inflammatory sites during the pathogenesis of various diseases, including diabetes, vascular complications, neurodegenerative disorders, and cancers and RAGE transduces their binding into pro-inflammatory responses. Upon ligand binding, uses TIRAP and MYD88 as adapters to transduce the signal ultimately leading to the induction or inflammatory cytokines IL6, IL8 and TNFalpha through activation of NF-kappa-B (PubMed:21829704). Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key pro-inflammatory mediators (PubMed: 19386136). Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons (PubMed: 19906677). ABPP- initiated RAGE signaling, especially stimulation of p38 mitogen- activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space. Participates in endothelial albumin transcytosis together with HMGB1 through the RAGE/SRC/Caveolin-1 pathway, leading to endothelial hyperpermeability (PubMed: 27572515). Mediates the loading of HMGB1 in extracellular vesicles (EVs) that shuttle HMGB1 to hepatocytes by transferrin-mediated endocytosis and subsequently promote hepatocyte pyroptosis by activating the NLRP3 inflammasome (PubMed:34743181). Promotes also extracellular hypomethylated DNA (CpG DNA) uptake by cells via the endosomal route to activate inflammatory responses (PubMed: 24081950, PubMed:28515150). #### **Cellular Location** [Isoform 1]: Cell membrane; Single-pass type I membrane protein [Isoform 10]: Cell membrane; Single-pass type I membrane protein **Tissue Location** Endothelial cells. ## **Anti-RAGE Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture ## **Anti-RAGE Antibody - Images** Anti-RAGE antibody, ABO10553, Western blottingLane 1: Recombinant Human RAGE Protein 10ngLane 2: Recombinant Human RAGE Protein 5ngLane 3: Recombinant Human RAGE Protein 2.5ng Anti-RAGE antibody, ABO10553, IHC(P)IHC(P): Rat Lung Tissue ## **Anti-RAGE Antibody - Background** The receptor for advanced glycation end products(RAGE) is a multi-ligand member of the immunoglobulin superfamily of cell surface molecules. It interacts with distinct molecules implicated in homeostasis, development and inflammation, and certain diseases such as diabetes and Alzheimer's disease. RAGE is also a central cell surface receptor for amphoterin and EN-RAGE. RAGE is associated with sustained NF-kappaB activation in the diabetic microenvironment and has a central role in sensory neuronal dysfunction. Moreover, RAGE propagates cellular dysfunction in several inflammatory disorders and diabetes, and it also functions as an endothelial adhesion receptor promoting leukocyte recruitment.