Anti-PAK1 Antibody **Catalog # ABO10881** #### **Specification** # **Anti-PAK1 Antibody - Product Information** Application WB Primary Accession O13153 Host Rabbit Reactivity Human, Mouse, Rat Clonality Polyclonal Lyophilized **Description** Rabbit IgG polyclonal antibody for Serine/threonine-protein kinase PAK 1(PAK1) detection. Tested with WB in Human; Mouse; Rat. #### Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml. ## **Anti-PAK1 Antibody - Additional Information** **Gene ID 5058** #### **Other Names** Serine/threonine-protein kinase PAK 1, 2.7.11.1, Alpha-PAK, p21-activated kinase 1, PAK-1, p65-PAK, PAK1 # Calculated MW 60647 MW KDa # **Application Details** Western blot, 0.1-0.5 μg/ml, Human, Rat, Mouse
 #### **Subcellular Localization** Cytoplasm. Cell junction, focal adhesion. Cell membrane. Cell projection, ruffle membrane. Recruited to the cell membrane by interaction with CDC42 and RAC1. Recruited to focal adhesions upon activation. Colocalized with CIB1 within membrane ruffles during cell spreading upon readhesion to fibronectin. #### **Protein Name** Serine/threonine-protein kinase PAK 1 #### Contents Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg Thimerosal, 0.05mg NaN3. ## Immunogen A synthetic peptide corresponding to a sequence at the N-terminus of human PAK1(1-14aa MSNNGLDIQDKPPA), different from the related mouse and rat sequences by on amino acid. #### **Purification** Immunogen affinity purified. **Cross Reactivity** No cross reactivity with other proteins Storage At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time. Avoid repeated freezing and thawing. #### **Sequence Similarities** Belongs to the protein kinase superfamily. STE Ser/Thr protein kinase family. STE20 subfamily. ## **Anti-PAK1 Antibody - Protein Information** Name PAK1 {ECO:0000303|PubMed:8805275, ECO:0000312|HGNC:HGNC:8590} #### **Function** Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed: 11896197, PubMed:12876277, PubMed: 14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed: 8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed: 8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed: 9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMI) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser- 338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed: 11733498). Phosphorylates SNAI1 at 'Ser- 246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed: 15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed: 23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed: 25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed: 23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed: 17420447). #### **Cellular Location** Cytoplasm. Cell junction, focal adhesion. Cell projection, lamellipodium. Cell membrane. Cell projection, ruffle membrane. Cell projection, invadopodium. Nucleus, nucleoplasm. Chromosome. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome Note=Colocalizes with RUFY3, F-actin and other core migration components in invadopodia at the cell periphery (PubMed:25766321) Recruited to the cell membrane by interaction with CDC42 and RAC1 Recruited to focal adhesions upon activation. Colocalized with CIB1 within membrane ruffles during cell spreading upon readhesion to fibronectin. Upon DNA damage, translocates to the nucleoplasm when phosphorylated at Thr-212 where is co-recruited with MORC2 on damaged chromatin (PubMed:23260667). Localization to the centrosome does not depend upon the presence of gamma-tubulin (PubMed:27012601) Localization of the active, but not inactive, protein to the adhesions and edge of lamellipodia is mediated by interaction with GIT1 (PubMed:11896197). {ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601} ## **Tissue Location** Overexpressed in gastric cancer cells and tissues (at protein level) (PubMed:25766321). ## **Anti-PAK1 Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - Immunoprecipitation - Flow Cytomety # • <u>Cell Culture</u> Anti-PAK1 Antibody - Images Anti-PAK1 antibody, ABO10881, Western blottingLane 1: Rat Testis Tissue LysateLane 2: Rat Spleen Tissue LysateLane 3: SW620 Cell LysateLane 4: MCF-7 Cell LysateLane 5: CEM Cell LysateLane 6: HT1080 Cell Lysate ## **Anti-PAK1 Antibody - Background** Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene. PAK proteins are critical effectors that link RhoGTPases to cytoskeleton reorganization and nuclear signaling. PAK proteins, a family of serine/threonine p21-activated kinases, include PAK1, PAK2, PAK3 and PAK4. These proteins serve as targets for the small GTP binding proteins Cdc42 and Rac and have been implicated in a wide range of biological activities. PAK1 regulates cell motility and morphology. Alternative transcripts of this gene have been found, but their full-length natures have not yet been determined. The PAK1 gene is mapped to 11q13-q14 by inclusion within a mapped clone.