

# Anti-ATM Antibody

Catalog # ABO11091

### Specification

# Anti-ATM Antibody - Product Information

ApplicationWBPrimary Accession013315HostRabbitReactivityHuman, Mouse, RatClonalityPolyclonalFormatLyophilizedDescriptionRabbit IgG polyclonal antibody for Serine-protein kinase ATM(ATM) detection. Tested with WB inHuman;Mouse;Rat.Human;Mouse;Rat.

**Reconstitution** Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

## Anti-ATM Antibody - Additional Information

Gene ID 472

**Other Names** Serine-protein kinase ATM, 2.7.11.1, Ataxia telangiectasia mutated, A-T mutated, ATM

Calculated MW 350687 MW KDa

**Application Details** Western blot, 0.1-0.5 μg/ml, Human, Rat, Mouse<br>

**Subcellular Localization** Nucleus. Cytoplasmic vesicle. Primarily nuclear. Found also in endocytic vesicles in association with beta-adaptin.

Tissue Specificity

Found in pancreas, kidney, skeletal muscle, liver, lung, placenta, brain, heart, spleen, thymus, testis, ovary, small intestine, colon and leukocytes.

Protein Name Serine-protein kinase ATM

**Contents** Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg Thimerosal, 0.05mg NaN3.

Immunogen

A synthetic peptide corresponding to a sequence at the N-terminus of human ATM(36-50aa DPETIKHLDRHSDSK), different from the related rat and mouse sequences by two amino acids.



**Purification** Immunogen affinity purified.

**Cross Reactivity** No cross reactivity with other proteins

Storage

At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time.Avoid repeated freezing and thawing.

Sequence Similarities Belongs to the PI3/PI4-kinase family. ATM subfamily.

### Anti-ATM Antibody - Protein Information

#### Name ATM

#### Function

Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor (PubMed: <a href="http://www.uniprot.org/citations/10550055" target=" blank">10550055</a>, PubMed:<a href="http://www.uniprot.org/citations/10839545" target=" blank">10839545</a>, PubMed:<a href="http://www.uniprot.org/citations/10910365" target=" blank">10910365</a>, PubMed:<a href="http://www.uniprot.org/citations/12556884" target=" blank">12556884</a>, PubMed:<a href="http://www.uniprot.org/citations/14871926" target=" blank">14871926</a>, PubMed:<a href="http://www.uniprot.org/citations/15064416" target="\_blank">15064416</a>, PubMed:<a href="http://www.uniprot.org/citations/15448695" target=" blank">15448695</a>, PubMed:<a href="http://www.uniprot.org/citations/15456891" target=" blank">15456891</a>, PubMed:<a href="http://www.uniprot.org/citations/15790808" target=" blank">15790808</a>, PubMed:<a href="http://www.uniprot.org/citations/15916964" target=" blank">15916964</a>, PubMed:<a href="http://www.uniprot.org/citations/17923702" target=" blank">17923702</a>, PubMed:<a href="http://www.uniprot.org/citations/21757780" target=" blank">21757780</a>, PubMed:<a href="http://www.uniprot.org/citations/24534091" target="\_blank">24534091</a>, PubMed:<a href="http://www.uniprot.org/citations/35076389" target="\_blank">35076389</a>, PubMed:<a href="http://www.uniprot.org/citations/9733514" target=" blank">9733514</a>). Recognizes the substrate consensus sequence [ST]-Q (PubMed:<a href="http://www.uniprot.org/citations/10550055" target=" blank">10550055</a>, PubMed:<a href="http://www.uniprot.org/citations/10839545" target=" blank">10839545</a>, PubMed: <a href="http://www.uniprot.org/citations/10910365" target=" blank">10910365</a>, PubMed:<a href="http://www.uniprot.org/citations/12556884" target="\_blank">12556884</a>, PubMed:<a href="http://www.uniprot.org/citations/14871926" target="\_blank">14871926</a>, PubMed: <a href="http://www.uniprot.org/citations/15448695" target=" blank">15448695</a>, PubMed: <a href="http://www.uniprot.org/citations/15456891" target=" blank">15456891</a>, PubMed:<a href="http://www.uniprot.org/citations/15916964" target=" blank">15916964</a>, PubMed:<a href="http://www.uniprot.org/citations/17923702" target=" blank">17923702</a>, PubMed:<a href="http://www.uniprot.org/citations/24534091" target=" blank">24534091</a>, PubMed:<a href="http://www.uniprot.org/citations/9733514" target=" blank">9733514</a>). Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism (By similarity). Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second



allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FBXW7, FANCD2, NFKBIA, BRCA1, CREBBP/CBP, RBBP8/CTIP, FBXO46, MRE11, nibrin (NBN), RAD50, RAD17, PELI1, TERF1, UFL1, RAD9, UBOLN4 and DCLRE1C (PubMed:<a href="http://www.uniprot.org/citations/10550055" target=" blank">10550055</a>, PubMed:<a href="http://www.uniprot.org/citations/10766245" target=" blank">10766245</a>, PubMed:<a href="http://www.uniprot.org/citations/10802669" target=" blank">10802669</a>, PubMed:<a href="http://www.uniprot.org/citations/10839545" target=" blank">10839545</a>, PubMed:<a href="http://www.uniprot.org/citations/10910365" target=" blank">10910365</a>, PubMed:<a href="http://www.uniprot.org/citations/10973490" target="\_blank">10973490</a>, PubMed:<a href="http://www.uniprot.org/citations/11375976" target=" blank">11375976</a>, PubMed:<a href="http://www.uniprot.org/citations/12086603" target=" blank">12086603</a>, PubMed:<a href="http://www.uniprot.org/citations/15456891" target=" blank">15456891</a>, PubMed:<a href="http://www.uniprot.org/citations/19965871" target=" blank">19965871</a>, PubMed:<a href="http://www.uniprot.org/citations/21757780" target="\_blank">21757780</a>, PubMed:<a href="http://www.uniprot.org/citations/24534091" target=" blank">24534091</a>, PubMed:<a href="http://www.uniprot.org/citations/26240375" target=" blank">26240375</a>, PubMed:<a href="http://www.uniprot.org/citations/26774286" target="\_blank">26774286</a>, PubMed:<a href="http://www.uniprot.org/citations/30171069" target=" blank">30171069</a>, PubMed:<a href="http://www.uniprot.org/citations/30612738" target=" blank">30612738</a>, PubMed:<a href="http://www.uniprot.org/citations/30886146" target="\_blank">30886146</a>, PubMed:<a href="http://www.uniprot.org/citations/30952868" target="\_blank">30952868</a>, PubMed:<a href="http://www.uniprot.org/citations/38128537" target=" blank">38128537</a>, PubMed:<a href="http://www.uniprot.org/citations/9733515" target=" blank">9733515</a>, PubMed:<a href="http://www.uniprot.org/citations/9843217" target="\_blank">9843217</a>). May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent proteasome degradation (PubMed: <a href="http://www.uniprot.org/citations/19965871" target=" blank">19965871</a>). Phosphorylates ATF2 which stimulates its function in DNA damage response (PubMed: <a href="http://www.uniprot.org/citations/15916964" target=" blank">15916964</a>). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:<a href="http://www.uniprot.org/citations/29203878" target=" blank">29203878</a>). Phosphorylates TTC5/STRAP at 'Ser-203' in the cytoplasm in response to DNA damage, which promotes TTC5/STRAP nuclear localization (PubMed:<a href="http://www.uniprot.org/citations/15448695" target=" blank">15448695</a>). Also involved in pexophagy by mediating phosphorylation of PEX5: translocated to peroxisomes in response to reactive oxygen species (ROS), and catalyzes phosphorylation of PEX5, promoting PEX5 ubiquitination and induction of pexophagy (PubMed: <a href="http://www.uniprot.org/citations/26344566" target=" blank">26344566</a>).

### **Cellular Location**

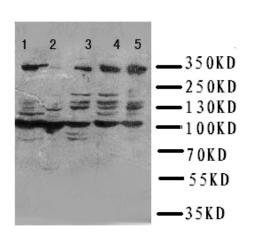
Nucleus. Cytoplasmic vesicle. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome {ECO:000250|UniProtKB:Q62388}. Peroxisome matrix. Note=Primarily nuclear (PubMed:9050866, PubMed:9150358). Found also in endocytic vesicles in association with beta-adaptin (PubMed:9707615). Translocated to peroxisomes in response to reactive oxygen species (ROS) by PEX5 (PubMed:26344566)

#### **Tissue Location**

Found in pancreas, kidney, skeletal muscle, liver, lung, placenta, brain, heart, spleen, thymus, testis, ovary, small intestine, colon and leukocytes

### Anti-ATM Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.




- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

### Anti-ATM Antibody - Images



Anti-ATM antibody, ABO11091, Western blottingLane 1: Rat Testis Tissue Lysate Lane 2: U87 Cell Lysate Lane 3: MCF-7 Cell Lysate



Anti-ATM antibody, ABO11091, Western blottingLane 1: HELA Cell Lysate Lane 2: SMMC Cell Lysate Lane 3: U87 Cell Lysate Lane 4: A549 Cell Lysate Lane 5: MCF-7 Cell Lysate

## Anti-ATM Antibody - Background

ATM(ataxia telangiectasia mutated), also known as TEL1 or TELO1, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks. The ATM protein is a member of the phosphatidylinositol 3-kinase family of proteins that respond to DNA damage by



phosphorylating key substrates involved in DNA repair and/or cell cycle control. Linkage analysis of ataxia-telangiectasia led to mapping of the ATM gene to chromosome 11q22.3. Using an antiserum developed to a peptide corresponding to the deduced amino acid sequence of ATM, the ATM protein is a single, high molecular weight protein predominantly confined to the nucleus of human fibroblasts, although it is present in both nuclear and microsomal fractions from human lymphoblast cells and peripheral blood lymphocytes. Overexpression of ATM cDNA in AT cells enhanced their survival after radiation exposure, decreased radiation-induced chromosome aberrations, reduced radioresistant DNA synthesis, and partially corrected defective cell cycle checkpoints and induction of stress-activated protein kinase. ATM has an essential role in the reconstitutive capacity of hematopoietic stem cells but is not as important for the proliferation or differentiation of progenitors, in a telomere-independent manner. ATM functions directly in the repair of chromosomal DNA double-stranded breaks by maintaining DNA ends in repair complexes generated during lymphocyte gene assembly.