

Anti-Hsp90 Alpha Picoband Antibody

Catalog # ABO11798

Specification

Anti-Hsp90 Alpha Picoband Antibody - Product Information

Application Primary Accession Host Reactivity Clonality Format **Description** WB, IHC-P, ICC <u>P07900</u> Rabbit Human, Mouse, Rat Polyclonal Lyophilized

Rabbit IgG polyclonal antibody for Heat shock protein HSP 90-alpha(HSP90AA1) detection. Tested with WB, IHC-P, ICC in Human;Mouse;Rat.

Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

Anti-Hsp90 Alpha Picoband Antibody - Additional Information

Gene ID 3320

Other Names Heat shock protein HSP 90-alpha, Heat shock 86 kDa, HSP 86, HSP86, Lipopolysaccharide-associated protein 2, LAP-2, LPS-associated protein 2, Renal carcinoma antigen NY-REN-38, HSP90AA1, HSP90A, HSPC1, HSPCA

Calculated MW 84660 MW KDa

Application Details Immunocytochemistry , 0.5-1 µg/ml, Human, -
Immunohistochemistry(Paraffin-embedded Section), 0.5-1 µg/ml, Human, Mouse, Rat, By Heat
Western blot, 0.1-0.5 µg/ml, Human, Rat

Subcellular Localization Cytoplasm. Melanosome. Cell membrane. Identified by mass spectrometry in melanosome fractions from stage I to stage IV.

Protein Name Heat shock protein HSP 90-alpha

Contents Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg NaN3.

Immunogen

E.coli-derived human Hsp90 alpha recombinant protein (Position: P2-V365). Human Hsp90 alpha shares 99% amino acid (aa) sequence identity with both mouse and rat Hsp90 alpha.

Purification Immunogen affinity purified.

Cross Reactivity No cross reactivity with other proteins

Storage

At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time.Avoid repeated freezing and thawing.

Anti-Hsp90 Alpha Picoband Antibody - Protein Information

Name HSP90AA1 (HGNC:5253)

Synonyms HSP90A, HSPC1, HSPCA

Function

Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co- chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed: 12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed: 25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histories from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes

STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:20628368, PubMed:<a

Cellular Location

Nucleus {ECO:0000250|UniProtKB:P07901}. Cytoplasm {ECO:0000250|UniProtKB:P07901}. Melanosome. Cell membrane. Mitochondrion. Note=Identified by mass spectrometry in melanosome fractions from stage I to stage IV

Anti-Hsp90 Alpha Picoband Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-Hsp90 Alpha Picoband Antibody - Images

Anti-Hsp90-alpha-Picoband antibody, ABO11798-1.JPGIHC(P): Human Intestinal Cancer Tissue

Anti-Hsp90-alpha-Picoband antibody, ABO11798-2.JPGIHC(P): Mouse Brain Tissue

Anti-Hsp90-alpha-Picoband antibody, ABO11798-3.JPGIHC(P): Rat Brain Tissue

Anti-Hsp90-alpha-Picoband antibody, ABO11798-4.JPGICC: A549 Cell

Anti-Hsp90-alpha-Picoband antibody, ABO11798-5.JPGICC : MCF-7 Cell

Anti-Hsp90-alpha-Picoband antibody, ABO11798-6.jpgAll lanes: Anti-HSP90(ABO11798) at 0.5ug/mlLane 1: Rat Liver Tissue Lysate at 40ugLane 2: Hela Whole Cell Lysate at 40ugLane 3: MCF-7 Whole Cell Lysate at 40ugLane 4: Raji Whole Cell Lysate at 40ugPredicted bind size: 83KDObserved bind size: 83KD

Anti-Hsp90 Alpha Picoband Antibody - Background

Heat shock protein HSP 90-alpha is a protein that in humans is encoded by the HSP90AA1Â gene. The gene, HSP90AA1, encodes the human stress-inducible 90-kDa heat shock protein alpha (Hsp90A). Complemented by the constitutively expressed paralog Hsp90B which shares over 85% amino acid sequence identity, Hsp90A expression is initiated when a cell experiences proteotoxic stress. Once expressed Hsp90A dimers operate as molecular chaperones that bind and fold other proteins into their functional 3-dimensional structures. This molecular chaperoning ability of Hsp90A is driven by a cycle of structural rearrangements fueled by ATP hydrolysis. Current research on Hsp90A focuses in its role as a drug target due to its interaction with a large number of tumor promoting proteins and its role in cellular stress adaptation.