Anti-CRY2 Picoband Antibody Catalog # ABO12262 ### **Specification** # **Anti-CRY2 Picoband Antibody - Product Information** Application WB, IHC-P Primary Accession Q49AN0 Host Rabbit Reactivity Human, Mouse, Rat Clonality Polyclonal Lyophilized **Description** Rabbit IgG polyclonal antibody for Cryptochrome-2(CRY2) detection. Tested with WB, IHC-P in Human; Mouse; Rat. < br> #### Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml. # **Anti-CRY2 Picoband Antibody - Additional Information** **Gene ID 1408** **Other Names** Cryptochrome-2, CRY2, KIAA0658 Calculated MW 66947 MW KDa #### **Application Details** Immunohistochemistry(Paraffin-embedded Section), 0.5-1 μ g/ml, Mouse, Rat, Human, By Heat
br>
Western blot, 0.1-0.5 μ g/ml, Human, Mouse, Rat
br> ### **Subcellular Localization** Cytoplasm . Nucleus . Translocated to the nucleus through interaction with other Clock proteins such as PER2 or ARNTL. #### **Tissue Specificity** Expressed in all tissues examined including fetal brain, fibroblasts, heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon and leukocytes. Highest levels in heart and skeletal muscle. ### **Protein Name** Cryptochrome-2 #### **Contents** Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg NaN3. ### **Immunogen** A synthetic peptide corresponding to a sequence at the N-terminus of human CRY2 (171-200aa RFQAIISRMELPKKPVGLVTSQQMESCRAE), different from the related mouse and rat sequences by five amino acids. Purification Immunogen affinity purified. **Cross Reactivity**No cross reactivity with other proteins Storage At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time. Avoid repeated freezing and thawing. Sequence Similarities Belongs to the DNA photolyase class-1 family. ## **Anti-CRY2 Picoband Antibody - Protein Information** Name CRY2 Synonyms KIAA0658 #### **Function** Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, Tel: 858.875.1900 Fax: 858.875.1999 which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. CRY1 and CRY2 have redundant functions but also differential and selective contributions at least in defining the pace of the SCN circadian clock and its circadian transcriptional outputs. Less potent transcriptional repressor in cerebellum and liver than CRY1, though less effective in lengthening the period of the SCN oscillator. Seems to play a critical role in tuning SCN circadian period by opposing the action of CRY1. With CRY1, dispensable for circadian rhythm generation but necessary for the development of intercellular networks for rhythm synchrony. May mediate circadian regulation of cAMP signaling and gluconeogenesis by blocking glucagon-mediated increases in intracellular cAMP concentrations and in CREB1 phosphorylation. Besides its role in the maintenance of the circadian clock, is also involved in the regulation of other processes. Plays a key role in glucose and lipid metabolism modulation, in part, through the transcriptional regulation of genes involved in these pathways, such as LEP or ACSL4. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by binding to glucocorticoid response elements (GREs). Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. Represses the CLOCK-BMAL1 induced transcription of NAMPT (By similarity). Represses PPARD and its target genes in the skeletal muscle and limits exercise capacity (By similarity). Represses the transcriptional activity of NR112 (By similarity). #### **Cellular Location** Cytoplasm. Nucleus Note=Translocated to the nucleus through interaction with other Clock proteins such as PER2 or BMAL1 #### **Tissue Location** Expressed in all tissues examined including fetal brain, fibroblasts, heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon and leukocytes. Highest levels in heart and skeletal muscle. ### **Anti-CRY2 Picoband Antibody - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture ### Anti-CRY2 Picoband Antibody - Images Anti- CRY2 Picoband antibody, ABO12262, Western blottingAll lanes: Anti CRY2 (ABO12262) at 0.5ug/mlLane 1: Rat Testis Tissue Lysate at 50ugLane 2: Rat Brain Tissue Lysate at 50ugLane 3: Mouse Brain Tissue Lysate at 50ugLane 4: 22RV1 Whole Cell Lysate at 40ugPredicted bind size: 67KDObserved bind size: 67KD Anti- CRY2 Picoband antibody, ABO12262,IHC(P)IHC(P): Rat Liver Tissue Anti- CRY2 Picoband antibody, ABO12262,IHC(P)IHC(P): Mouse Kidney Tissue # **Anti-CRY2 Picoband Antibody - Background** This gene encodes a flavin adenine dinucleotide-binding protein that is a key component of the circadian core oscillator complex, which regulates the circadian clock. And it is upregulated by CLOCK/ARNTL heterodimers but then represses this upregulation in a feedback loop using PER/CRY heterodimers to interact with CLOCK/ARNTL. Polymorphisms in this gene have been associated with altered sleep patterns. The encoded protein is widely conserved across plants and animals. Two transcript variants encoding different isoforms have been found for this gene.