

Anti-Scn1a Picoband Antibody

Catalog # ABO12573

Specification

Anti-Scn1a Picoband Antibody - Product Information

Application WB
Primary Accession P35498
Host Rabbit

Reactivity Human, Mouse, Rat

Clonality Polyclonal Lyophilized

Description

Rabbit IgG polyclonal antibody for Sodium channel protein type 1 subunit alpha(SCN1A) detection. Tested with WB in Human; Mouse; Rat.

Reconstitution

Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

Anti-Scn1a Picoband Antibody - Additional Information

Gene ID 6323

Other Names

Sodium channel protein type 1 subunit alpha, Sodium channel protein brain I subunit alpha, Sodium channel protein type I subunit alpha, Voltage-gated sodium channel subunit alpha Nav1.1, SCN1A, NAC1, SCN1

Calculated MW 228972 MW KDa

Application Details

Western blot, 0.1-0.5 µg/ml, Human, Mouse, Rat
br>

Subcellular Localization

Cell membrane; Multi-pass membrane protein.

Protein Name

Sodium channel protein type 1 subunit alpha

Contents

Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg NaN3.

Immunogen

A synthetic peptide corresponding to a sequence at the C-terminus of human Scn1a (1981-2009aa ACPPSYDRVTKPIVEKHEQEGKDEKAKGK), identical to the related rat sequence.

Purification

Immunogen affinity purified.

Cross Reactivity

No cross reactivity with other proteins.

Storage

At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time. Avoid repeated freezing and thawing.

Anti-Scn1a Picoband Antibody - Protein Information

Name SCN1A (HGNC:10585)

Synonyms NAC1, SCN1

Function

Pore-forming subunit of Nav1.1, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:14672992/a>). By regulating the excitability of neurons, ensures that they respond appropriately to synaptic inputs, maintaining the balance between excitation and inhibition in brain neural circuits (By similarity). Nav1.1 plays a role in controlling the excitability and action potential propagation from somatosensory neurons, thereby contributing to the sensory perception of mechanically-induced pain (By similarity).

Cellular Location

Cell membrane; Multi-pass membrane protein

Anti-Scn1a Picoband Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Anti-Scn1a Picoband Antibody - Images

Western blot analysis of Scn1a expression in rat brain extract (lane 1), mouse brain extract (lane 2) and U87 whole cell lysates (lane 4). Scn1a at 250KD was detected using rabbit anti- Scn1a Antigen Affinity purified polyclonal antibody (Catalog # ABO12573) at0.5 ??g/mL. The blot was developed using chemiluminescence (ECL) method .

Anti-Scn1a Picoband Antibody - Background

Nav1.1, also known as the sodium channel, voltage-gated, type I, alpha subunit (SCN1A), is a protein which in humans is encoded by the SCN1A gene. Voltage-dependent sodium channels are heteromeric complexes that regulate sodium exchange between intracellular and extracellular spaces and are essential for the generation and propagation of action potentials in muscle cells and neurons. Each sodium channel is composed of a large pore-forming, glycosylated alpha subunit and two smaller beta subunits. This gene encodes a sodium channel alpha subunit, which has four homologous domains, each of which contains six transmembrane regions. Allelic variants of this gene are associated with generalized epilepsy with febrile seizures and epileptic encephalopathy. Alternative splicing results in multiple transcript variants. The RefSeq Project has decided to create four representative RefSeq records. Three of the transcript variants are supported by experimental evidence and the fourth contains alternate 5' untranslated exons, the exact combination of which have not been experimentally confirmed for the full-length transcript.