

Anti-KAT13D/CLOCK Antibody

Catalog # ABO12760

Specification

Anti-KAT13D/CLOCK Antibody - Product Information

ApplicationWB, IHC-P, IHC-F, ICCPrimary AccessionO15516HostRabbitReactivityHuman, Mouse, RatClonalityPolyclonalFormatLyophilizedDescriptionRabbit IgG polyclonal antibody for Circadian locomoter output cycles protein kaput(CLOCK)detection. Tested with WB, IHC-P, IHC-F, ICC in Human;Mouse;Rat.

Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

Anti-KAT13D/CLOCK Antibody - Additional Information

Gene ID 9575

Other Names Circadian locomoter output cycles protein kaput, hCLOCK, 2.3.1.48, Class E basic helix-loop-helix protein 8, bHLHe8, CLOCK, BHLHE8, KIAA0334

Calculated MW 95304 MW KDa

Application Details Immunohistochemistry(Paraffin-embedded Section), 0.5-1 µg/ml, By Heat
Immunohistochemistry(Frozen Section), 0.5-1 µg/ml,
Western blot, 0.1-0.5 µg/ml
Immunocytochemistry, 0.5-1 µg/ml

Subcellular Localization

Nucleus . Cytoplasm . Shuffling between the cytoplasm and the nucleus is under circadian regulation and is ARNTL/BMAL1-dependent. Phosphorylated form located in the nucleus while the nonphosphorylated form found only in the cytoplasm. Sequestered to the cytoplasm in the presence of ID2 (By similarity). Localizes to sites of DNA damage in a H2AX- independent manner.

Tissue Specificity

Hair follicles (at protein level). Expressed in all tissues examined including spleen, thymus, prostate, testis, ovary, small intestine, colon, leukocytes, heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. Highest levels in testis and skeletal muscle. Low levels in thymus, lung and liver. Expressed in all brain regions with highest levels in cerebellum. Highly expressed in the suprachiasmatic nucleus (SCN).

Protein Name

Circadian locomoter output cycles protein kaput

Contents

Each vial contains 5mg BSA, 0.9mg NaCl, 0.2mg Na2HPO4, 0.05mg NaN3.

Immunogen

A synthetic peptide corresponding to a sequence at the N-terminus of human KAT13D/CLOCK (75-109aa QKSIDFLRKHKEITAQSDASEIRQDWKPTFLSNEE), different from the related mouse sequence by one amino acid, and identical to the related rat sequence.

Purification Immunogen affinity purified.

Cross Reactivity No cross reactivity with other proteins

Storage

At -20°C for one year. After r°Constitution, at 4°C for one month. It°Can also be aliquotted and stored frozen at -20°C for a longer time.Avoid repeated freezing and thawing.

Sequence Similarities Contains 1 bHLH (basic helix-loop-helix) domain.

Anti-KAT13D/CLOCK Antibody - Protein Information

Name CLOCK

Synonyms BHLHE8, KIAA0334

Function

Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post- translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription

factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates the circadian expression of ICAM1, VCAM1, CCL2, THPO and MPL and also acts as an enhancer of the transactivation potential of NF-kappaB. Plays an important role in the homeostatic regulation of sleep. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The CLOCK-BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed: 23229515). The CLOCK-BMAL1 heterodimer also recognizes the noncanonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed: 23229515). CLOCK has an intrinsic acetyltransferase activity, which enables circadian chromatin remodeling by acetylating histones and nonhistone proteins, including its own partner BMAL1. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region (PubMed:21980503). The acetyltransferase activity of CLOCK is as important as its transcription activity in circadian control. Acetylates metabolic enzymes IMPDH2 and NDUFA9 in a circadian manner. Facilitated by BMAL1, rhythmically interacts and acetylates argininosuccinate synthase 1 (ASS1) leading to enzymatic inhibition of ASS1 as well as the circadian oscillation of arginine biosynthesis and subsequent ureagenesis (PubMed: 28985504). Drives the circadian rhythm of blood pressure through transcriptional activation of ATP1B1 (By similarity).

Cellular Location

Nucleus. Cytoplasm {ECO:0000250|UniProtKB:008785}. Cytoplasm, cytosol. Note=Shuttling between the cytoplasm and the nucleus is under circadian regulation and is BMAL1-dependent Phosphorylated form located in the nucleus while the nonphosphorylated form found only in the cytoplasm. Sequestered to the cytoplasm in the presence of ID2 (By similarity). Localizes to sites of DNA damage in a H2AX-independent manner. {ECO:0000250|UniProtKB:008785, ECO:0000269|PubMed:21659603}

Tissue Location

Hair follicles (at protein level). Expressed in all tissues examined including spleen, thymus, prostate, testis, ovary, small intestine, colon, leukocytes, heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. Highest levels in testis and skeletal muscle. Low levels in thymus, lung and liver. Expressed in all brain regions with highest levels in cerebellum. Highly expressed in the suprachiasmatic nucleus (SCN).

Anti-KAT13D/CLOCK Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

<u>Western Blot</u>

- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-KAT13D/CLOCK Antibody - Images

Anti- KAT13D/CLOCK antibody, ABO12760, Western blottingAll lanes: Anti KAT13D/CLOCK (ABO12760) at 0.5ug/mlLane 1: Rat Skeletal Muscle Tissue Lysate at 50ugLane 2: Mouse Skeletal Muscle Tissue Lysate at 50ugLane 3: NIH3T3 Whole Cell Lysate at 40ugLane 4: A549 Whole Cell Lysate at 40ugLane 5: MCF7 Whole Cell Lysate at 40ugPredicted bind size: 95KDObserved bind size: 115KD

Anti- KAT13D/CLOCK antibody, ABO12760, IHC(P)IHC(P): Mouse Skeletal Muscle Tissue

Anti- KAT13D/CLOCK antibody, ABO12760, IHC(P)IHC(P): Rat Testis Tissue

Anti- KAT13D/CLOCK antibody, ABO12760, IHC(P)IHC(P): Human Intestinal Cancer Tissue

Figure 5. IHC analysis of CLOCK using anti-CLOCK antibody (ABO12760).CLOCK was detected in immunocytochemical section of A549 cell. Heat mediated antigen retrieval was performed in citrate buffer (pH6, epitope retrieval solution) for 20 mins. The tissue section was blocked with 10% goat serum. The tissue section was then incubated with $1\hat{l}_{4}$ g/ml rabbit anti-CLOCK Antibody (ABO12760) overnight at 4ŰC. Biotinylated goat anti-rabbit IgG was used as secondary antibody and incubated for 30 minutes at 37ŰC. The tissue section was developed using Strepavidin-Biotin-Complex (SABC) with DAB as the chromogen.

Figure 6. IHC analysis of CLOCK using anti-CLOCK antibody (ABO12760).CLOCK was detected in immunocytochemical section of PC-3 cell. Heat mediated antigen retrieval was performed in citrate buffer (pH6, epitope retrieval solution) for 20 mins. The tissue section was blocked with 10% goat serum. The tissue section was then incubated with $11\frac{1}{4}$ g/ml rabbit anti-CLOCK Antibody (ABO12760) overnight at 4ŰC. Biotinylated goat anti-rabbit IgG was used as secondary antibody and incubated for 30 minutes at 37ŰC. The tissue section was developed using Strepavidin-Biotin-Complex (SABC) with DAB as the chromogen.

Figure 7. IHC analysis of CLOCK using anti-CLOCK antibody (ABO12760).CLOCK was detected in immunocytochemical section of SW480 cell. Heat mediated antigen retrieval was performed in citrate buffer (pH6, epitope retrieval solution) for 20 mins. The tissue section was blocked with 10% goat serum. The tissue section was then incubated with $1\hat{l}_{4}$ g/ml rabbit anti-CLOCK Antibody (ABO12760) overnight at 4ŰC. Biotinylated goat anti-rabbit IgG was used as secondary antibody and incubated for 30 minutes at 37ŰC. The tissue section was developed using Strepavidin-Biotin-Complex (SABC) with DAB as the chromogen.

Figure 8. IHC analysis of CLOCK using anti-CLOCK antibody (ABO12760).CLOCK was detected in

frozen section of human placenta tissue . Heat mediated antigen retrieval was performed in citrate buffer (pH6, epitope retrieval solution) for 20 mins. The tissue section was blocked with 10% goat serum. The tissue section was then incubated with $11^{1/4}$ g/ml rabbit anti-CLOCK Antibody (ABO12760) overnight at 4ŰC. Biotinylated goat anti-rabbit IgG was used as secondary antibody and incubated for 30 minutes at 37ŰC. The tissue section was developed using Strepavidin-Biotin-Complex (SABC) with DAB as the chromogen.

Anti-KAT13D/CLOCK Antibody - Background

Clock (Circadian Locomotor Output Cycles Kaput) is also known as KAT13D. The protein encoded by this gene plays a central role in the regulation of circadian rhythms. This protein encodes a transcription factor of the basic helix-loop-helix (bHLH) family and contains DNA binding histone acetyltransferase activity. And the encoded protein forms a heterodimer with ARNTL (BMAL1) that binds E-box enhancer elements upstream of Period (PER1, PER2, PER3) and Cryptochrome (CRY1, CRY2) genes and activates transcription of these genes. PER and CRY proteins heterodimerize and repress their own transcription by interacting in a feedback loop with CLOCK/ARNTL complexes. Polymorphisms in this gene may be associated with behavioral changes in certain populations and with obesity and metabolic syndrome. Alternative splicing results in multiple transcript variants.