

Anti-Complement C9 Picoband Antibody

Catalog # ABO12913

Specification

Anti-Complement C9 Picoband Antibody - Product Information

ApplicationWB, EPrimary AccessionP02748HostRabbitReactivityHuman, MouseClonalityPolyclonalFormatLyophilizedDescriptionRabbit IgG polyclonal antibody for Complement C9 detection. Tested with WB, Direct ELISA inHuman;Mouse.Human;Mouse.

Reconstitution Add 0.2ml of distilled water will yield a concentration of 500ug/ml.

Anti-Complement C9 Picoband Antibody - Additional Information

Gene ID 735

Other Names Complement component C9, Complement component C9a, Complement component C9b, C9

Calculated MW 63173 MW KDa

Application Details Western blot, 0.1-0.5 μg/ml
 Direct ELISA, 0.1-0.5 μg/ml

Subcellular Localization Secreted. Cell membrane; Multi-pass membrane protein. Secreted as soluble monomer. Oligomerizes at target membranes, forming a pre-pore. A conformation change then leads to the formation of a 100 Angstrom diameter pore.

Tissue Specificity Plasma.

Contents Each vial contains 4mg Trehalose, 0.9mg NaCl, 0.2mg Na₂HPO₄, 0.05mg NaN₃.

Immunogen E. coli-derived human Complement C9 recombinant protein (Position: K289-N515).

Cross Reactivity No cross reactivity with other proteins.

Storage

At -20°C; for one year. After r°Constitution, at 4°C; for one month. It°Can also be aliquotted and stored frozen at -20°C; for a longer time. Avoid repeated freezing and thawing.

Anti-Complement C9 Picoband Antibody - Protein Information

Name C9 {ECO:0000303|PubMed:4018030, ECO:0000312|HGNC:HGNC:1358}

Function

Pore-forming component of the membrane attack complex (MAC), a multiprotein complex activated by the complement cascade, which inserts into a target cell membrane and forms a pore, leading to target cell membrane rupture and cell lysis (PubMed:22832194, PubMed:26841837, PubMed:26841934, PubMed:27052168, PubMed:30552328, PubMed:6177822, PubMed:9212048, PubMed:9634479). The MAC is initiated by proteolytic cleavage of C5 into complement C5b in response to the classical, alternative, lectin and GZMK complement pathways (PubMed: 9212048, PubMed:9634479). The complement pathways consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system (PubMed:9212048, PubMed:9634479). Constitutes the pore-forming subunit of the MAC complex: during MAC assembly, C9 associates with the C5b8 intermediate complex, and polymerizes to complete the pore (PubMed:26841934, PubMed:30111885, PubMed:30552328, PubMed:34752492, PubMed:4055801, PubMed:6177822).

Cellular Location

Secreted. Target cell membrane; Multi-pass membrane protein. Note=Secreted as soluble monomer (PubMed:26841934, PubMed:30111885, PubMed:4055801, PubMed:9634479) Oligomerizes at target membranes, forming a pre-pore (PubMed:26841934, PubMed:30111885, PubMed:31061395, PubMed:4055801, PubMed:9634479). A conformation change then leads to the formation of a 100 Angstrom diameter pore (PubMed:26841934, PubMed:30111885, PubMed:31061395, PubMed:4055801, PubMed:9634479).

Tissue Location Plasma (at protein level).

Anti-Complement C9 Picoband Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-Complement C9 Picoband Antibody - Images

95 . 72 - 55 - 43 - 34 -	k Da 180 - 130 -	
34- 26-	95 -	
43 - 34 - 26 -	72 -	Sector-
34 - 26 -	55 -	
26 -	43 -	
26 -	34-	
17-		
	17-	

Figure 1. Western blot analysis of Complement C9 using anti-Complement C9 antibody (ABO12913).

Anti-Complement C9 Picoband Antibody - Background

Complement component 9 is a protein involved in the complement system. It participates in the formation of the Membrane Attack Complex (MAC). The MAC assembles on bacterial membranes to form a pore, permitting disruption of bacterial membrane organization. Mutations in this gene cause component C9 deficiency. And this gene is mapped to 5p13.1.