

Anti-GSK3 beta Rabbit Monoclonal Antibody

Catalog # ABO13092

Specification

Anti-GSK3 beta Rabbit Monoclonal Antibody - Product Information

Application WB, IHC, IF, ICC, FC

Primary Accession

Host
Isotype
Reactivity
Clonality
Format

P49841
Rabbit
Rabbit
Rabbit IgG
Human, Mouse
Monoclonal
Liquid

Description

Anti-GSK3 beta Rabbit Monoclonal Antibody. Tested in WB, IHC, ICC/IF, Flow Cytometry applications. This antibody reacts with Human, Mouse.

Anti-GSK3 beta Rabbit Monoclonal Antibody - Additional Information

Gene ID 2932

Other Names

Glycogen synthase kinase-3 beta, GSK-3 beta, 2.7.11.26, Serine/threonine-protein kinase GSK3B, 2.7.11.1, GSK3B (HGNC:4617)

Calculated MW 46903 MW KDa

Application Details

WB 1:500-1:3000
IHC 1:50-1:200
ICC/IF 1:100-1:500
FC 1:200-1:500

Subcellular Localization

Cytoplasm. Nucleus. Cell membrane.

Tissue Specificity

Expressed in testis, thymus, prostate and ovary and weakly expressed in lung, brain and kidney. Colocalizes with EIF2AK2/PKR and TAU in the Alzheimer disease (AD) brain.

Protein Name

Glycogen synthase kinase-3 beta (gsk3b)

Contents

Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol, 0.4-0.5mg/ml BSA.

Immunogen

A synthesized peptide derived from human GSK3 beta

Purification Affinity-chromatography

Storage

Store at -20°C for one year. For short term storage and frequent use, store at 4°C for up to one month. Avoid repeated freeze-thaw cycles.

Anti-GSK3 beta Rabbit Monoclonal Antibody - Protein Information

Name GSK3B (HGNC:4617)

Function

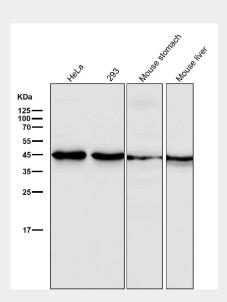
Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1 (PubMed: 11430833, PubMed:12554650, PubMed:14690523, PubMed:16484495, PubMed:1846781, PubMed:1846781</a href="http://www.uniprot.org/citations/1846781" target= href="http://www.uniprot.org/citations/20937854" target=" blank">20937854, PubMed:9072970). Requires primed phosphorylation of the majority of its substrates (PubMed: 11430833, PubMed:16484495). In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis (PubMed:8397507). May also mediate the development of insulin resistance by regulating activation of transcription factors (PubMed:8397507). Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase (PubMed: 8397507). In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes (PubMed: 12554650). Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA (PubMed: 1846781). Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin (PubMed:9072970). Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules (PubMed:14690523). MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease (PubMed: 14690523). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed: 20937854). Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair (By similarity). Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti- apoptotic response to TNF-alpha (TNF/TNFA) (By similarity). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes (By similarity). Through phosphorylation of the anti-apoptotic protein MCL1, may control cell

apoptosis in response to growth factors deprivation (By similarity). Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin (PubMed: 9819408). Is necessary for the establishment of neuronal polarity and axon outgrowth (PubMed: 20067585). Phosphorylates MARK2, leading to inhibition of its activity (By similarity). Phosphorylates SIK1 at 'Thr-182', leading to sustainment of its activity (PubMed:18348280). Phosphorylates ZC3HAV1 which enhances its antiviral activity (PubMed: 22514281). Phosphorylates SNAI1, leading to its ubiquitination and proteasomal degradation (PubMed: 15448698, PubMed:15647282, PubMed:25827072, PubMed:29059170). Phosphorylates SFPQ at 'Thr-687' upon T-cell activation (PubMed: 20932480). Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59' and stabilizes it by protecting it from proteasomal degradation. Regulates the circadian clock via phosphorylation of the major clock components including BMAL1, CLOCK and PER2 (PubMed: 19946213, PubMed:28903391). Phosphorylates FBXL2 at 'Thr-404' and primes it for ubiquitination by the SCF(FBXO3) complex and proteasomal degradation (By similarity). Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomal degradation (PubMed: 19946213). Phosphorylates BMAL1 at 'Ser-17' and 'Ser-21' and primes it for ubiquitination and proteasomal degradation (PubMed: 28903391). Phosphorylates OGT at 'Ser-3' or 'Ser-4' which positively regulates its activity. Phosphorylates MYCN in neuroblastoma cells which may promote its degradation (PubMed: 24391509). Regulates the circadian rhythmicity of hippocampal long-term potentiation and BMAL1 and PER2 expression (By similarity). Acts as a regulator of autophagy by mediating phosphorylation of KAT5/TIP60 under starvation conditions, activating KAT5/TIP60 acetyltransferase activity and promoting acetylation of key autophagy regulators, such as ULK1 and RUBCNL/Pacer (PubMed: 30704899). Negatively regulates extrinsic apoptotic signaling pathway via death domain receptors. Promotes the formation of an anti-apoptotic complex, made of DDX3X, BRIC2 and GSK3B, at death receptors, including TNFRSF10B. The anti-apoptotic function is most effective with weak apoptotic signals and can be overcome by stronger stimulation (PubMed:18846110). Phosphorylates E2F1, promoting the interaction between E2F1 and USP11, stabilizing E2F1 and promoting its activity (PubMed:17050006. PubMed:28992046). Phosphorylates mTORC2 complex component RICTOR at 'Ser-1235' in response to endoplasmic stress, inhibiting mTORC2 (PubMed:21343617). Phosphorylates mTORC2 complex component RICTOR at 'Thr-1695' which facilitates FBXW7-mediated ubiquitination and subsequent degradation of RICTOR (PubMed: 25897075). Phosphorylates FXR1, promoting FXR1 ubiquitination by the SCF(FBXO4) complex and FXR1 degradation by the proteasome (By similarity). Phosphorylates interleukin-22 receptor subunit IL22RA1, preventing its proteasomal degradation (By similarity).

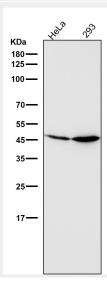
Cellular Location

Cytoplasm. Nucleus. Cell membrane. Note=The phosphorylated form shows localization to cytoplasm and cell membrane (PubMed:20937854) The MEMO1-RHOA-DIAPH1 signaling pathway controls localization of the phosphorylated form to the cell membrane (PubMed:20937854)

Tissue Location

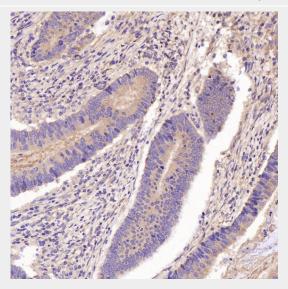

Expressed in testis, thymus, prostate and ovary and weakly expressed in lung, brain and kidney. Colocalizes with EIF2AK2/PKR and TAU in the Alzheimer disease (AD) brain

Anti-GSK3 beta Rabbit Monoclonal Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

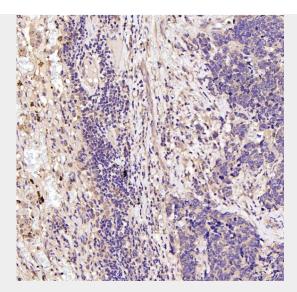
Anti-GSK3 beta Rabbit Monoclonal Antibody - Images



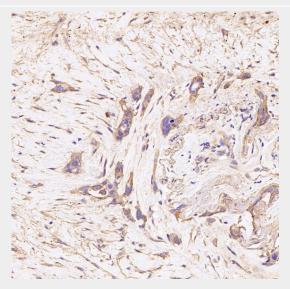
All lanes use the Antibody at 1:4K dilution for 1 hour at room temperature.



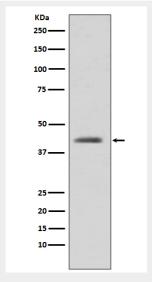
All lanes use the Antibody at 1:2K dilution for 1 hour at room temperature.



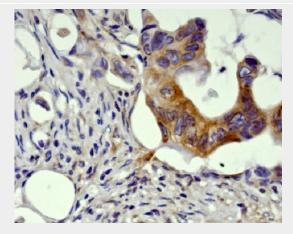
Immunohistochemical analysis of paraffin-embedded Human colon cancer, using the Antibody at 1:100 dilution.



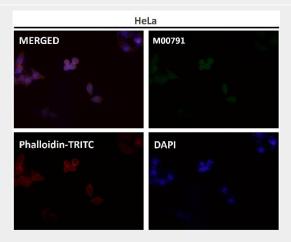
Immunohistochemical analysis of paraffin-embedded Human prostate cancer, using the Antibody at 1:100 dilution.

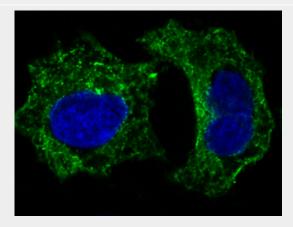


Immunohistochemical analysis of paraffin-embedded Human small cell lung cancer , using the Antibody at $1:100\ \text{dilution}.$



Immunohistochemical analysis of paraffin-embedded Human pancreatic cancer, using the Antibody at 1:400 dilution.




Western blot analysis of GSK3 beta expression in HEK293 cell lysate.

Immunohistochemical analysis of paraffin-embedded human colon carcinome, using GSK3 beta Antibody.

Immunofluorescent analysis using the Antibody at 1:50 dilution.

Immunofluorescent analysis of Hela cells, using GSK3 beta Antibody.