Anti-IKK beta IKBKB Rabbit Monoclonal Antibody **Catalog # ABO13941** # **Specification** # Anti-IKK beta IKBKB Rabbit Monoclonal Antibody - Product Information Application WB, IHC, IF, ICC Primary Accession Host Rabbit Isotype Rabbit IgG Reactivity Rat, Human, Mouse Clonality Monoclonal Format Liquid Description Anti-IKK beta IKBKB Rabbit Monoclonal Antibody . Tested in WB, IHC, ICC/IF applications. This antibody reacts with Human, Mouse, Rat. # Anti-IKK beta IKBKB Rabbit Monoclonal Antibody - Additional Information ### **Gene ID 3551** #### **Other Names** Inhibitor of nuclear factor kappa-B kinase subunit beta, I-kappa-B-kinase beta, IKK-B, IKK-beta, IkBKB, 2.7.11.10, I-kappa-B kinase 2, IKK-2, IKK2, Nuclear factor NF-kappa-B inhibitor kinase beta, NFKBIKB, Serine/threonine protein kinase IKBKB, 2.7.11.1, IKBKB, IKKB #### **Calculated MW** 86564 MW KDa ### **Application Details** WB 1:500-1:2000
IHC 1:50-1:200
ICC/IF 1:50-1:200</br> ### **Subcellular Localization** Cytoplasm. Nucleus. Membrane raft. Colocalized with DPP4 in membrane rafts. ### **Tissue Specificity** Highly expressed in heart, placenta, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis and peripheral blood. ### **Contents** Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol, 0.4-0.5mg/ml BSA. #### **Immunogen** A synthesized peptide derived from human IKK beta #### **Purification** Affinity-chromatography Storage Store at -20°C for one year. For short term storage and frequent use, store at 4°C for up to one month. Avoid repeated freeze-thaw cycles. # Anti-IKK beta IKBKB Rabbit Monoclonal Antibody - Protein Information Name IKBKB **Synonyms IKKB** #### **Function** Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed: 20434986, PubMed:20797629, PubMed:21138416, PubMed:30337470, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation (PubMed:9346484). Phosphorylates inhibitors of NF-kappa-B on 2 critical serine residues (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:20434986, PubMed:20797629, PubMed:21138416, PubMed:9346484). In addition to the NF-kappa-B inhibitors, phosphorylates several other components of the signaling pathway including NEMO/IKBKG, NF-kappa-B subunits RELA and NFKB1, as well as IKK-related kinases TBK1 and IKBKE (PubMed: 11297557, PubMed:14673179, PubMed:20410276, PubMed:21138416). IKK-related kinase phosphorylations may prevent the overproduction of inflammatory mediators since they exert a negative regulation on canonical IKKs (PubMed:11297557, PubMed:20410276, PubMed:21138416). Phosphorylates FOXO3, mediating the TNF-dependent inactivation of this pro-apoptotic transcription factor (PubMed:15084260). Also phosphorylates other substrates including NAA10, NCOA3, BCL10 and IRS1 (PubMed: 17213322, PubMed:19716809). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF- mediated RIPK1-dependent cell death (By similarity). Phosphorylates the C-terminus of IRF5, stimulating IRF5 homodimerization and translocation into the nucleus (PubMed:25326418). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylates STAT1 at 'Thr-749' which restricts interferon signaling and anti-inflammatory responses and promotes innate inflammatory responses (PubMed:38621137). IKBKB-mediated phosphorylation of STAT1 at 'Thr-749' promotes binding of STAT1 to the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). It also promotes binding of STAT1 to the IL12B promoter and activation of IL12B transcription (PubMed:32209697). #### **Cellular Location** Cytoplasm. Nucleus. Membrane raft. Note=Colocalized with DPP4 in membrane rafts. ### **Tissue Location** Highly expressed in heart, placenta, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis and peripheral blood # Anti-IKK beta IKBKB Rabbit Monoclonal Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - <u>Immunofluorescence</u> - Immunoprecipitation - Flow Cytomety - Cell Culture # Anti-IKK beta IKBKB Rabbit Monoclonal Antibody - Images Immunohistochemical analysis of paraffin-embedded human kidney, using IKK beta Antibody. Immunofluorescent analysis of HeLa cells, using IKK beta Antibody. Figure 1. Western blot analysis of IKBKB using anti-IKBKB antibody (M00118). Electrophoresis was performed on a 5-20% SDS-PAGE gel at 70V (Stacking gel) / 90V (Resolving gel) for 2-3 hours. The sample well of each lane was loaded with 30 ug of sample under reducing conditions. Lane 1: human Hela whole cell lysates, Lane 2: human Raji whole cell lysates, Lane 3: human A549 whole cell lysates, Lane 4: rat heart tissue lysates, Lane 5: mouse heart tissue lysates. After electrophoresis, proteins were transferred to a nitrocellulose membrane at 150 mA for 50-90 minutes. Blocked the membrane with 5% non-fat milk/TBS for 1.5 hour at RT. The membrane was incubated with rabbit anti-IKBKB antigen affinity purified monoclonal antibody (Catalog # M00118) at 1:500 overnight at 4°C, then washed with TBS-0.1%Tween 3 times with 5 minutes each and probed with a goat anti-rabbit IgG-HRP secondary antibody at a dilution of 1:5000 for 1.5 hour at RT. The signal is developed using an Enhanced Chemiluminescent detection (ECL) kit (Catalog # EK1002) with Tanon 5200 system. A specific band was detected for IKBKB at approximately 87 kDa. The expected band size for IKBKB is at 87 kDa.