

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody

Catalog # ABO15227

Specification

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody - Product Information

Application WB, IF, ICC, IP

Primary Accession

Host

Isotype

Q00653

Rabbit

IgG

Reactivity Rat, Human, Mouse

Clonality Monoclonal Format Liquid

Description

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody . Tested in WB, ICC/IF, IP applications. This antibody reacts with Human, Mouse, Rat.

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody - Additional Information

Gene ID 4791

Other Names

Nuclear factor NF-kappa-B p100 subunit, DNA-binding factor KBF2, H2TF1, Lymphocyte translocation chromosome 10 protein, Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2, Oncogene Lyt-10, Lyt10, Nuclear factor NF-kappa-B p52 subunit, NFKB2, LYT10

Application Details

WB 1:1000-1:5000
br>ICC/IF 1:50-1:200
br>IP 1:50

Contents

Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol, 0.4-0.5mg/ml BSA.

Immunogen

A synthesized peptide derived from human NFkB p100 / p52

Purification

Affinity-chromatography

Storage Store at -20°C for one year. For short term

storage and frequent use, store at 4°C for

up to one month. Avoid repeated

freeze-thaw cycles.

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody - Protein Information

Name NFKB2

Synonyms LYT10

Function

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain- containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I- kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome- mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer.

Cellular Location

Nucleus. Cytoplasm. Note=Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I- kappa-B)

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- <u>Immunofluorescence</u>
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Anti-NFkB p100 / p52 Rabbit Monoclonal Antibody - Images

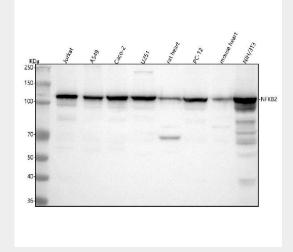


Figure 1. Western blot analysis of NF- κ B p100/p52 using anti-NF- κ B p100/p52 antibody (M01228-1).

Electrophoresis was performed on a 5-20% SDS-PAGE gel at 70V (Stacking gel) / 90V (Resolving gel) for 2-3 hours. The sample well of each lane was loaded with 30 ug of sample under reducing conditions

Lane 1: human Jurkat whole cell lysates,

Lane 2: human A549 whole cell lysates,

Lane 3: human CACO-2 whole cell lysates,

Lane 4: human U251 whole cell lysates,

Lane 5: rat heart tissue lysates,

Lane 6: rat PC-12 whole cell lysates,

Lane 7: mouse heart tissue lysates,

Lane 8: mouse NIH/3T3 whole cell lysates.

After electrophoresis, proteins were transferred to a nitrocellulose membrane at 150 mA for 50-90 minutes. Blocked the membrane with 5% non-fat milk/TBS for 1.5 hour at RT. The membrane was incubated with rabbit anti-NF-κB p100/p52 antigen affinity purified monoclonal antibody (Catalog # M01228-1) at 1:1000 overnight at 4°C, then washed with TBS-0.1%Tween 3 times with 5 minutes each and probed with a goat anti-rabbit IgG-HRP secondary antibody at a dilution of 1:500 for 1.5 hour at RT. The signal is developed using an Enhanced Chemiluminescent detection (ECL) kit (Catalog # EK1002) with Tanon 5200 system. A specific band was detected for NF-κB p100/p52 at approximately 110 kDa. The expected band size for NF-κB p100/p52 is at 97 kDa.