

Anti-ATP5G1 Rabbit Monoclonal Antibody

Catalog # ABO16438

Specification

Anti-ATP5G1 Rabbit Monoclonal Antibody - Product Information

Application WB, IHC
Primary Accession P05496
Host Rabbit
Isotype IgG

Reactivity Rat, Human, Mouse

Clonality Monoclonal Format Liquid

Description

Anti-ATP5G1 Rabbit Monoclonal Antibody . Tested in WB, IHC applications. This antibody reacts with Human, Mouse, Rat.

Anti-ATP5G1 Rabbit Monoclonal Antibody - Additional Information

Gene ID 516

Other Names

ATP synthase F(0) complex subunit C1, mitochondrial, ATP synthase lipid-binding protein, ATP synthase membrane subunit c locus 1 {ECO:0000312|HGNC:HGNC:841}, ATP synthase proteolipid P1, ATP synthase proton-transporting mitochondrial F(0) complex subunit C1, ATPase protein 9, ATPase subunit c, ATP5MC1 (HGNC:841)

Calculated MW

8 kDa KDa

Application Details

WB 1:500-1:2000
IHC 1:50-1:200

Contents

Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol, 0.4-0.5mg/ml BSA.

Immunogen

A synthesized peptide derived from human ATP5G1

Purification

Affinity-chromatography

Storage

Store at -20°C for one year. For short term storage and frequent use, store at 4°C for up to one month. Avoid repeated freeze-thaw cycles.

Anti-ATP5G1 Rabbit Monoclonal Antibody - Protein Information

Name ATP5MC1 (HGNC:841)

Function

Subunit c, of the mitochondrial membrane ATP synthase complex (F(1)F(0)) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed: aproton: aproximately-number-10">aproximately-num

href="http://www.uniprot.org/citations/37244256" target="_blank">37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:<a href="http://www.uniprot.org/citations/37244256"

target="_blank">37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). With the subunit a (MT- ATP6), forms the proton-conducting channel in the F(0) domain, that contains two crucial half-channels (inlet and outlet) that facilitate proton movement from the mitochondrial intermembrane space (IMS) into the matrix (PubMed:37244256). Protons are taken up via the inlet half- channel and released through the outlet half-channel, following a Grotthuss mechanism (PubMed:37244256" target="blank">37244256).

Cellular Location

Mitochondrion membrane; Multi-pass membrane protein

Anti-ATP5G1 Rabbit Monoclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Anti-ATP5G1 Rabbit Monoclonal Antibody - Images

