

Synaptotagmin Antibody

Rabbit Polyclonal Antibody Catalog # ABV10145

Specification

Synaptotagmin Antibody - Product Information

Application WB
Primary Accession P21707

Reactivity Human, Mouse, Rat

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 47399

Synaptotagmin Antibody - Additional Information

Gene ID 25716

Positive Control Rat kidney tissue lysate

Application & Usage The antibody can be used in Western Blot

analysis (1-4 μ g/ml). However, the optimal concentrations should be determined individually. Blocking peptide is available

separately.

Other Names

Synaptotagmin-1, Synaptotagmin I, Sytl, p65, Syt1

Target/Specificity
Synaptotagmin

Antibody Form

Liquid

AppearanceColorless liquid

Formulation

 $100~\mu g$ (0.5 mg/ml) affinity purified rabbit anti- Synaptotagmin polyclonal antibody in phosphate buffered saline (PBS), pH 7.2, containing 30% glycerol, 0.5% BSA, 5 mM EDTA and 0.01% thimerosal.

Handling

The antibody solution should be gently mixed before use.

Reconstitution & Storage

-20 °C

Background Descriptions

Precautions

Synaptotagmin Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Synaptotagmin Antibody - Protein Information

Name Syt1 {ECO:0000312|RGD:3803}

Function

Calcium sensor that participates in triggering neurotransmitter release at the synapse (PubMed:2333096, PubMed:30107533). May have a regulatory role in the membrane interactions during trafficking of synaptic vesicles at the active zone of the synapse. It binds acidic phospholipids with a specificity that requires the presence of both an acidic head group and a diacyl backbone. A Ca(2+)-dependent interaction between synaptotagmin and putative receptors for activated protein kinase C has also been reported. It can bind to at least three additional proteins in a Ca(2+)-independent manner; these are neurexins, syntaxin and AP2. Plays a role in dendrite formation by melanocytes.

Cellular Location

Cytoplasmic vesicle, secretory vesicle membrane; Single-pass membrane protein. Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane; Single-pass membrane protein. Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane; Single-pass membrane protein. Cytoplasm

Tissue Location

Expressed in the brain (at protein level) (PubMed:17190793). Predominantly expressed in rostral, phylogenetically younger brain regions, and in some endocrine tissues

Synaptotagmin Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Synaptotagmin Antibody - Images

Western blot analysis of Synaptotagmin 1 using rat kidney tissue lysate

Synaptotagmin Antibody - Background

The synaptotagmins are integral membrane proteins of synaptic vesicles tho μ ght to serve as Ca (2+) sensors in the process of vesicular trafficking and exocytosis. Calcium binding to synaptotagmin participates in triggering neurotransmitter release at the synapse. The first C2 domain mediates Ca(2+)-dependent phospholipid binding. The second C2 domain mediates interaction with Stonin 2. Synaptotagmin may have a regulatory role in the membrane interactions during trafficking of synaptic vesicles at the active zone of the synapse. It binds acidic phospholipids with a specificity that requires the presence of both an acidic head group and a diacyl backbone. A Ca(2+)-dependent interaction between synaptotagmin and putative receptors for activated protein kinase C has also been reported. It can bind to at least three additional proteins in a Ca(2+)-independent manner; neurexins, syntaxin and AP2.