

Phospho-p53 Antibody

Rabbit Polyclonal Antibody Catalog # ABV10376

Specification

Phospho-p53 Antibody - Product Information

Application WB, IHC, IP
Primary Accession P04637
Other Accession EAW90140

Reactivity Human, Mouse, Rat

Host Rabbit
Clonality Polyclonal
Isotype Rabbit IgG
Calculated MW 43653

Phospho-p53 Antibody - Additional Information

Gene ID 7157

Application & Usage Western blot analysis (0.5-4 μg/ml),

immunoprecipitation (5-10 μg/ml), and Immunohistochemistry (20 μg/ml).

However, the optimal conditions should be determined individually. The Phospho-p53 (Ser15) antibody detects ~53 kDa Ser15 phosphorylated p53. It does not react with

non-phosphorylated p53 or p53 phosphorylated at other sites.

Other Names

TP53, p53, LFS1, TRP53, P53, tumor protein p53, Li-Fraumeni syndrome

Target/Specificity

Phospho-p53

Antibody Form

Liquid

Appearance

Colorless liquid

Formulation

 $100~\mu g$ (0.5 mg/ml) affinity purified rabbit polyclonal phospho-p53 (Ser15) antibody in phosphate buffered saline (PBS), pH 7.2, containing 30% glycerol, 0.5% BSA, 0.01% thimerosal.

Handling

The antibody solution should be gently mixed before use.

Reconstitution & Storage

-20 °C

Background Descriptions

Precautions

Phospho-p53 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Phospho-p53 Antibody - Protein Information

Name TP53

Synonyms P53

Function

```
Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on
the physiological circumstances and cell type (PubMed: <a
href="http://www.uniprot.org/citations/11025664" target=" blank">11025664</a>, PubMed:<a
href="http://www.uniprot.org/citations/12524540" target="_blank">12524540</a>, PubMed:<a href="http://www.uniprot.org/citations/12810724" target="_blank">12810724</a>, PubMed:<a
href="http://www.uniprot.org/citations/15186775" target="blank">15186775</a>, PubMed:<a
href="http://www.uniprot.org/citations/15340061" target="blank">15340061</a>, PubMed:<a
href="http://www.uniprot.org/citations/17317671" target=" blank">17317671</a>, PubMed:<a
href="http://www.uniprot.org/citations/17349958" target="_blank">17349958</a>, PubMed:<a
href="http://www.uniprot.org/citations/19556538" target="_blank">19556538</a>, PubMed:<a
href="http://www.uniprot.org/citations/20673990" target="blank">20673990</a>, PubMed:<a
href="http://www.uniprot.org/citations/20959462" target="_blank">20959462</a>, PubMed:<a
href="http://www.uniprot.org/citations/22726440" target="blank">22726440</a>, PubMed:<a
href="http://www.uniprot.org/citations/24051492" target="blank">24051492</a>, PubMed:<a
href="http://www.uniprot.org/citations/9840937" target=" blank">9840937</a>, PubMed:<a
href="http://www.uniprot.org/citations/24652652" target=" blank">24652652</a>). Involved in
cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling
a set of genes required for this process (PubMed:<a
href="http://www.uniprot.org/citations/11025664" target="_blank">11025664</a>, PubMed:<a
href="http://www.uniprot.org/citations/12524540" target="_blank">12524540</a>, PubMed:<a
href="http://www.uniprot.org/citations/12810724" target="_blank">12810724</a>, PubMed:<a
href="http://www.uniprot.org/citations/15186775" target="blank">15186775</a>, PubMed:<a
href="http://www.uniprot.org/citations/15340061" target="blank">15340061</a>, PubMed:<a
href="http://www.uniprot.org/citations/17317671" target="blank">17317671</a>, PubMed:<a
href="http://www.uniprot.org/citations/17349958" target="blank">17349958</a>, PubMed:<a
href="http://www.uniprot.org/citations/19556538" target="_blank">19556538</a>, PubMed:<a
href="http://www.uniprot.org/citations/20673990" target="blank">20673990</a>, PubMed:<a
href="http://www.uniprot.org/citations/20959462" target="blank">20959462</a>, PubMed:<a
href="http://www.uniprot.org/citations/22726440" target=" blank">22726440</a>, PubMed:<a
href="http://www.uniprot.org/citations/24051492" target="blank">24051492</a>, PubMed:<a
href="http://www.uniprot.org/citations/9840937" target="_blank">9840937</a>, PubMed:<a
href="http://www.uniprot.org/citations/24652652" target="_blank">24652652</a>). One of the
activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be
mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2
expression. Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or
TP53BP2/ASPP2 (PubMed:<a href="http://www.uniprot.org/citations/12524540"
target=" blank">12524540</a>). However, this activity is inhibited when the interaction with
PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:<a
href="http://www.uniprot.org/citations/12524540" target=" blank">12524540</a>). In
```


Tel: 858.875.1900 Fax: 858.875.1999

cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross- over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492/a>).

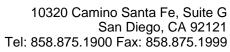
Cellular Location

Cytoplasm. Nucleus. Nucleus, PML body Endoplasmic reticulum. Mitochondrion matrix. Cytoplasm, cytoskeleton, microtubule organizing center, centrosome Note=Recruited into PML bodies together with CHEK2 (PubMed:12810724) Translocates to mitochondria upon oxidative stress (PubMed:22726440) Translocates to mitochondria in response to mitomycin C treatment (PubMed:27323408). Competitive inhibition of TP53 interaction with HSPA9/MOT-2 by UBXN2A results in increased protein abundance and subsequent translocation of TP53 to the nucleus (PubMed:24625977) [Isoform 2]: Nucleus. Cytoplasm. Note=Localized mainly in the nucleus with minor staining in the cytoplasm [Isoform 4]: Nucleus. Cytoplasm. Note=Predominantly nuclear but translocates to the cytoplasm following cell stress [Isoform 8]: Nucleus. Cytoplasm. Note=Localized in both nucleus and cytoplasm in most cells. In some cells, forms foci in the nucleus that are different from nucleoli

Tissue Location

Ubiquitous. Isoforms are expressed in a wide range of normal tissues but in a tissue-dependent manner. Isoform 2 is expressed in most normal tissues but is not detected in brain, lung, prostate, muscle, fetal brain, spinal cord and fetal liver. Isoform 3 is expressed in most normal tissues but is not detected in lung, spleen, testis, fetal brain, spinal cord and fetal liver. Isoform 7 is expressed in most normal tissues but is not detected in prostate, uterus, skeletal muscle and breast. Isoform 8 is detected only in colon, bone marrow, testis, fetal brain and intestine. Isoform 9 is expressed in most normal tissues but is not detected in brain, heart, lung, fetal liver, salivary gland, breast or intestine

Phospho-p53 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

Phospho-p53 Antibody - Images

Phospho-p53 Antibody - Background

The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. The activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis. p53 is phosphorylated at multiple sites in vivo and by several different protein kinases in vitro. p53 can apparently be phosphorylated by ATM, ATR, and DNA-PK at Ser15; the

phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and functional activation of p53 in response to DNA damage.