

Phospho-BRCA1 Antibody Rabbit Polyclonal Antibody Catalog # ABV10510

Specification

Phospho-BRCA1 Antibody - Product Information

Application	WB
Primary Accession	<u>P38398</u>
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Isotype	Rabbit IgG
Calculated MW	207721

Phospho-BRCA1 Antibody - Additional Information

Gene ID 672

Application & Usage

Western blotting (1-2 μ g/ml). However, the optimal conditions should be determined individually. Other applications have not been tested yet. Detect human BRCA1 when phosphorylated at Ser1189.

Other Names BRCA1, BRCA pSer 1280, Breast Cancer Gene 1, Breast Cancer 1, Early Onset; Breast-Ovarian Cancer Susceptibility

Target/Specificity Phospho-BRCA1

Antibody Form Liquid

Appearance Colorless liquid

Formulation

100 μ g (0.5 mg/ml) peptide affinity purified rabbit anti-phosphorylated BRCA1 polyclonal antibody in phosphate buffered saline (PBS), pH 7.2, containing 50% glycerol, 1% BSA, 0.02% thimerosal.

Handling The antibody solution should be gently mixed before use.

Reconstitution & Storage -20 °C

Background Descriptions

Precautions

Phospho-BRCA1 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Phospho-BRCA1 Antibody - Protein Information

Name BRCA1

Synonyms RNF53

Function

E3 ubiguitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiguitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:12887909, PubMed:10500182, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiguitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed: 18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed: 10724175, PubMed:12183412, PubMed:11836499, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed: 16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiguitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed: 20160719).

Cellular Location

Nucleus. Chromosome. Cytoplasm. Note=Localizes at sites of DNA damage at double-strand breaks (DSBs); recruitment to DNA damage sites is mediated by ABRAXAS1 and the BRCA1-A complex (PubMed:26778126) Translocated to the cytoplasm during UV-induced apoptosis (PubMed:20160719). [Isoform 5]: Cytoplasm

Tissue Location

Isoform 1 and isoform 3 are widely expressed. Isoform 3 is reduced or absent in several breast and

ovarian cancer cell lines

Phospho-BRCA1 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>
- Phospho-BRCA1 Antibody Images

Phospho-BRCA1 Antibody - Background

BRCA1 is a breast cancer susceptibility gene that was localized to chromosome 17q. Mutations within this gene are believed to account for approximately 45% of families with high incidence of breast cancer and at least 80% of families with increased incidence of both early-onset breast cancer and ovarian cancer. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. Like many other genes involved in familial cancer, BRCA1 appears to encode a tumor suppressor, a protein that acts as a negative regulator of tumor growth.