

Sushi Antibody

Rabbit Polyclonal Antibody Catalog # ABV10774

Specification

Sushi Antibody - Product Information

Application Reactivity Host Clonality Isotype WB All Species Rabbit Polyclonal Rabbit IgG

Sushi Antibody - Additional Information

Positive Control
Application & Usage
Other Names
Factor C Sushi 3 antibody, Sushi 3 antibody

Recombinant Sushi protein Western Blot analysis (1-4 μg/ml).

Target/Specificity

Sushi 3

Antibody Form

Liquid

Appearance Colorless liquid

Formulation

 $100~\mu g$ (0.5 mg/ml) polyclonal antibody in PBS pH 7.2, containing 30% glycerol, 0.5% BSA and 0.01% thimerosal.

Handling

The antibody solution should be gently mixed before use.

Reconstitution & Storage

-20 °C

Background Descriptions

Precautions

Sushi Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Sushi Antibody - Protein Information

Sushi Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

Sushi Antibody - Images

Sushi Antibody - Background

Sushi Peptide S3 is a trimer of one of the high endotoxin-binding domains, Sushi 3 (or S3) within Factor C, a lipopolysaccharide (LPS)-sensitive serine protease of the horseshoe crab (Limulus Polyphemus). S3 display detergent-like properties in disrupting LPS aggregates, with specificity for palmitoyl-oleoyl-phosphatidylglycerol (POPG) resulting from electrostatic and hydrophobic forces between the peptides and the bacterial lipids. The unsaturated nature of POPG confers fluidity and enhances insertion of the peptides into the lipid bilayer, causing maximal disruption of the bacterial membrane. In short, peptide S3 can bind to lipopolysaccharide (LPS) and inhibit the growth of Gram-negative bacteria without affecting mammalian cells. It has been shown that endotoxin activates Factor C based catalytic coagulation cascade resulting in the gelation of Limulus blood. This process is the basis of Limulus Amebocyte Lysate (LAL) endotoxin detection method.