NFkB p50 Polyclonal Antibody Purified Rabbit Polyclonal Antibody Catalog # ABV11528 # **Specification** # NFkB p50 Polyclonal Antibody - Product Information Application WB Primary Accession P19838 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Calculated MW 105356 # NFkB p50 Polyclonal Antibody - Additional Information ### **Gene ID 4790** #### **Other Names** Nuclear factor NF-kappa-B p105 subunit, DNA-binding factor KBF1, EBP-1, Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, Nuclear factor NF-kappa-B p50 subunit, NFKB1 # Target/Specificity NFkB p50 ## **Formulation** $100~\mu g$ (0.5 mg/ml) rabbit anti-NFkB p50 polyclonal antibody in phosphate buffered saline (PBS), pH 7.2, containing 30% glycerol, 0.5% BSA, 0.01% thimerosal. # Handling The antibody solution should be gently mixed before use. # **Background Descriptions** ### **Precautions** NFkB p50 Polyclonal Antibody is for research use only and not for use in diagnostic or therapeutic procedures. # NFkB p50 Polyclonal Antibody - Protein Information # Name NFKB1 #### **Function** NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain- containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, Ikappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally, p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. #### **Cellular Location** [Nuclear factor NF-kappa-B p105 subunit]: Cytoplasm ### NFkB p50 Polyclonal Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture # NFkB p50 Polyclonal Antibody - Images # NFkB p50 Polyclonal Antibody - Background Nuclear factor kappa B (NFkB) was identified as a sequence specific transcriptional activator that binds to the intronic enhancer of kappa light chain gene in B lymphocytes. NFkB is a heterodimer that consists of a 50 kDa DNA binding subunit (p50) and a 65 kDa transactivation subunit (p65/RelA). Both of these subunits exhibit sequence homology to the protooncogene c-Rel. The p50 has an isoform called p49/p52, and both proteins are derived from the amino-terminal of precursor protein p105 and p100. The p50/p65 heterodimer remains in the cytosol in an inactive form as a complex with its inhibitor, IkB. Upon stimulation of cells by a wide variety of stimuli such as lipopolysaccharide (LPS), pro-inflammatory cytokines (IL-1 & TNF, etc.), and viral infection, IkB is phosphorylated and degraded by proteosome. The active NFkB heterodimer is translocated into the nucleus and induces gene expression.