

ARID1A

Rabbit Monoclonal antibody(Mab) Catalog # AD80511

Specification

ARID1A - Product info

Application Primary Accession Reactivity Host Clonality Calculated MW IHC-P <u>014497</u> Human Rabbit Monoclonal 242045

ARID1A - Additional info

Gene ID Other Names 8289

AT-rich interactive domain-containing protein 1A, ARID domain-containing protein 1A, B120, BRG1-associated factor 250, BAF250, BRG1-associated factor 250a, BAF250A, Osa homolog 1, hOSA1, SWI-like protein, SWI/SNF complex protein p270, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1, hELD, ARID1A, BAF250, BAF250A, C1orf4, OSA1, SMARCF1

Dilution IHC-P~~Ready-to-use

Storage Maintain refrigerated at 2-8°C

ARID1A - Protein Information

Name ARID1A

Synonyms Function BAF250, BAF250A, Clorf4, OSA1, SMARCF1 Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors- specific chromatin remodeling complex (npBAF complex) and the neuronspecific chromatin remodeling complex (nBAF complex). During neural

	development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity).
Cellular Location	Nucleus {ECO:0000255 PROSITE-ProRule:PRU00355 , ECO:0000269 PubMed:11318604,
Tissue Location	ECO:0000269 PubMed:26614907} Highly expressed in spleen, thymus, prostate, testis, ovary, small intestine, colon, and PBL, and at a much lower level in heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas.

ARID1A - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot

- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

ARID1A - Images

Colon cancer