

KD-Validated Anti-IKK α Rabbit Monoclonal Antibody

Rabbit monoclonal antibody Catalog # AGI1176

Specification

KD-Validated Anti-IKK α Rabbit Monoclonal Antibody - Product Information

Application WB, ICC Primary Accession O15111

Reactivity
Clonality
Monoclonal
Isotype
Rat, Human, Mouse
Monoclonal
Rabbit IgG

Calculated MW Predicted, 85 kDa , observed, 85 kDa KDa

Gene Name CHUK

Aliases

CHUK; Component Of Inhibitor Of Nuclear
Factor Kappa B Kinase Complex; IKK-Alpha;
NFKBIKA; IKK1; IKKA; Inhibitor Of Nuclear
Factor Kappa-B Kinase Subunit Alpha;
Conserved Helix-Loop-Helix Ubiquitous
Kinase; IkBKA; TCF16; Transcription Factor
16; I-Kappa-B Kinase 1; EC 2.7.11.10;

16; I-Kappa-B Kinase 1; EC 2.7.11.10; IKK-1; Nuclear Factor NF-Kappa-B Inhibitor Kinase Alpha; Nuclear Factor NFkappaB Inhibitor Kinase Alpha; IkB Kinase Alpha

Subunit; I-Kappa-B Kinase-Alpha;

I-Kappa-B Kinase Alpha; I-Kappa-B Kinase; IkappaB Kinase; IKK-A Kinase; EC 2.7.11;

TCF-16; IKBKA; IKK-A; BPS2

Immunogen A synthesized peptide derived from human

ΙΚΚ α

KD-Validated Anti-IKK α Rabbit Monoclonal Antibody - Additional Information

Gene ID **1147**

Other Names

Inhibitor of nuclear factor kappa-B kinase subunit alpha, I-kappa-B kinase alpha, IKK-A, IKK-alpha, IkBKA, IkappaB kinase, 2.7.11.10, Conserved helix-loop-helix ubiquitous kinase, I-kappa-B kinase 1, IKK-1, IKK1, Nuclear factor NF-kappa-B inhibitor kinase alpha, NFKBIKA, Transcription factor 16, TCF-16, CHUK, IKKA, TCF16

KD-Validated Anti-IKK α Rabbit Monoclonal Antibody - Protein Information

Name CHUK

Synonyms IKKA, TCF16

Function

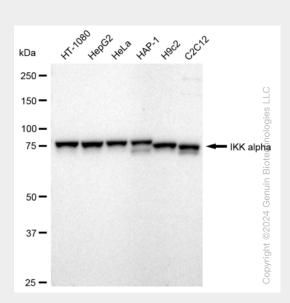
Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or

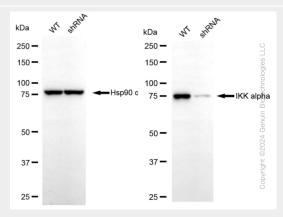
other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed: 35952808, PubMed: 9244310, PubMed: 9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed: 18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed: 18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed: 21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B- responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed: 12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed: 30217973).

Cellular Location

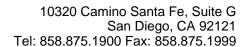
Cytoplasm. Nucleus Note=Shuttles between the cytoplasm and the nucleus

Tissue Location
Widely expressed.


KD-Validated Anti-IKK α Rabbit Monoclonal Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture


KD-Validated Anti-IKK α Rabbit Monoclonal Antibody - Images

Western blotting analysis using anti-IKK α antibody (Cat#AGI1176). Total cell lysates (30 μ g) from various cell lines were loaded and separated by SDS-PAGE. The blot was incubated with anti-IKK α antibody (Cat#AGI1176 , 1:20,000) and HRP-conjugated goat anti rabbit secondary antibody respectively.

Western blotting analysis using anti-IKK alpha antibody (Cat#AGI1176). IKK alpha expression in wild type (WT) and IKK alpha shRNA knockdown (KD) HeLa cells with 30 μ g of total cell lysates. β -Tubulin serves as a loading control. The blot was incubated with anti-IKK alpha antibody (Cat#AGI1176, 1:20,000) and HRP-conjugated goat anti rabbit secondary antibody respectively.

Immunocytochemical staining of HepG2 cells with anti-IKK alpha antibody (Cat#AGI1176, 1:1,000). Nuclei were stained blue with DAPI; IKK alpha was stained magenta with Alexa Fluor® 647. Images were taken using Leica stellaris 5. Protein abundance based on laser Intensity and smart gain: Medium. Scale bar: 20 μ m.