

KD-Validated Anti-FLI1 Rabbit Monoclonal Antibody Rabbit monoclonal antibody Catalog # AGI1309

Specification

KD-Validated Anti-FLI1 Rabbit Monoclonal Antibody - Product Information

Application Primary Accession Reactivity Clonality Isotype Calculated MW Gene Name Aliases	WB, FC, ICC <u>Q01543</u> Rat, Human, Mouse Monoclonal Rabbit IgG Predicted, 51 kDa; observed, 51 kDa KDa FLI1 FLI1; Fli-1 Proto-Oncogene, ETS Transcription Factor; SIC-; EWSR2; FLI-1; Friend Leukemia Integration 1
	Transcription Factor; Friend Leukemia Virus Integration 1; Transcription Factor ERGB; Ewing Sarcoma Breakpoint Region 2; Proto-Oncogene Fli-1; BDPLT21
Immunogen	A synthesized peptide derived from human FLI1

KD-Validated Anti-FLI1 Rabbit Monoclonal Antibody - Additional Information

Gene ID 2313 Other Names Friend leukemia integration 1 transcription factor, Proto-oncogene Fli-1, Transcription factor ERGB, FLI1

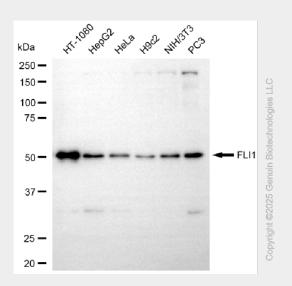
KD-Validated Anti-FLI1 Rabbit Monoclonal Antibody - Protein Information

Name FLI1

Function

Sequence-specific transcriptional activator (PubMed:24100448, PubMed:26316623, PubMed:28255014). Recognizes the DNA sequence 5'- C[CA]GGAAGT-3'.

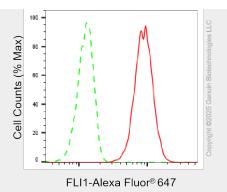
Cellular Location Nucleus.


KD-Validated Anti-FLI1 Rabbit Monoclonal Antibody - Protocols

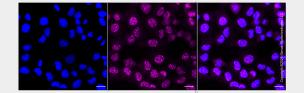
Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

KD-Validated Anti-FLI1 Rabbit Monoclonal Antibody - Images



Western blotting analysis using anti-FLI1 antibody (Cat#AGI1309). Total cell lysates (30 μ g) from various cell lines were loaded and separated by SDS-PAGE. The blot was incubated with anti-FLI1 antibody (Cat#AGI1309, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.


kDa が や 250 - 150 -	kDa 4 4 9 250 - 150 -	
100 — 75 — Ηsp90 α	250 - 150 -	1
50 —	50 FLI1	
37 -	37 — 0	
25 —	25 - 45	5
20 —	20 -	

Western blotting analysis using anti-FLI1 antibody (Cat#AGI1309). FLI1 expression in wild-type (WT) and FLI1 knockdown (KD) HT-1080 cells with 20 μ g of total cell lysates. Hsp90 α serves as a loading control. The blot was incubated with anti-FLI1 antibody (Cat#AGI1309, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

Flow cytometric analysis of FLI1 expression in HT-1080 cells using anti-FLI1 antibody (Cat#AGI1309, 1:2,000). Green, isotype control; red, FLI1.

Immunocytochemical staining of HT-1080 cells with anti-FLI1 antibody (Cat#AGI1309, 1:1,000). Nuclei were stained blue with DAPI; FLI1 was stained magenta with Alexa Fluor® 647. Images were taken using Leica stellaris 5. Protein abundance based on laser Intensity and smart gain: Medium. Scale bar, 20 μ m.