

KD-Validated Anti-Acetyl-CoA carboxylase alpha Rabbit Monoclonal Antibody **Rabbit monoclonal antibody**

Catalog # AGI1536

Specification

KD-Validated Anti-Acetyl-CoA carboxylase alpha Rabbit Monoclonal Antibody - Product Information

Application Primary Accession Reactivity Clonality Isotype Calculated MW	WB, FC, ICC <u>Q13085</u> Human Monoclonal Rabbit IgG Predicted, 266 kDa , observed, 266 kDa KDa
Gene Name Aliases	ACACA ACACA; Acetyl-CoA Carboxylase Alpha; ACC1; ACCA; Acetyl-Coenzyme A Carboxylase Alpha; Acetyl-CoA Carboxylase 1; ACC-Alpha; HACC1; ACAC; ACACalpha; ACCalpha; Acac1; ACC; EC 6.4.1.2; ACACALPHA; ACC-ALPHA; ACCALPHA;
Immunogen	ACACAD; ACAC1 A synthesized peptide derived from human Acetyl Coenzyme A Carboxylase

KD-Validated Anti-Acetyl-CoA carboxylase alpha Rabbit Monoclonal Antibody - Additional Information

Gene ID 31 **Other Names** Acetyl-CoA carboxylase 1, ACC1, 6.4.1.2, Acetyl-Coenzyme A carboxylase alpha, ACC-alpha, ACACA (HGNC:84), ACAC, ACC1, ACCA

KD-Validated Anti-Acetyl-CoA carboxylase alpha Rabbit Monoclonal Antibody - Protein Information

Name ACACA (HGNC:84)

Synonyms ACAC, ACC1, ACCA

Function

Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed: 20457939, PubMed:20952656, PubMed:29899443). This is a 2

steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin

Cellular Location Cytoplasm, cytosol {ECO:0000250|UniProtKB:Q5SWU9}

Tissue Location

Expressed in brain, placenta, skeletal muscle, renal, pancreatic and adipose tissues; expressed at low level in pulmonary tissue; not detected in the liver

KD-Validated Anti-Acetyl-CoA carboxylase alpha Rabbit Monoclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

KD-Validated Anti-Acetyl-CoA carboxylase alpha Rabbit Monoclonal Antibody - Images

Western blotting analysis using anti-Acetyl-CoA carboxylase alpha antibody (Cat#AGI1536). Total cell lysates (30 μ g) from various cell lines were loaded and separated by SDS-PAGE. The blot was incubated with anti-Acetyl-CoA carboxylase alpha antibody (Cat#AGI1536, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

kDa N shaw	kDa N man
250 —	250 – 📻 🐜 🛶 Acetyl-CoA carboxylase α
150 —	150 – 100 –
100 —	100 —
75 – [—] Ηsp90 α	75 —
	62024
50 —	50 —
37 –	37-

Western blotting analysis using anti-Acetyl-CoA carboxylase α antibody (Cat#AGI1536). Acetyl-CoA carboxylase α expression in wild type (WT) and Acetyl-CoA carboxylase α shRNA knockdown (KD) HeLa cells with 20 µg of total cell lysates. Hsp90 α serves as a loading control. The blot was incubated with anti-Acetyl-CoA carboxylase α antibody (Cat#AGI1536, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

Flow cytometric analysis of Acetyl-CoA carboxylase alpha expression in HepG2 cells using Acetyl-CoA carboxylase alpha antibody (Cat#AGI1536, 1:2,000). Green, isotype control; red, Acetyl-CoA carboxylase alpha.

Immunocytochemical staining of HepG2 cells with anti-Acetyl-CoA carboxylase alpha antibody (Cat#AGI1536, 1:1,000). Nuclei were stained blue with DAPI; Acetyl-CoA carboxylase alpha was stained magenta with Alexa Fluor® 647. Images were taken using Leica stellaris 5. Protein abundance based on laser Intensity and smart gain: Medium. Scale bar: 20 µm.