

KD-Validated Anti-NSDHL Rabbit Monoclonal Antibody Rabbit monoclonal antibody Catalog # AGI1609

Specification

KD-Validated Anti-NSDHL Rabbit Monoclonal Antibody - Product Information

Application Primary Accession Reactivity Clonality Isotype Calculated MW Gene Name Aliases	WB, FC, ICC <u>Q15738</u> Human Monoclonal Rabbit IgG Predicted, 42 kDa , observed , 38 kDa KDa NSDHL NAD(P) Dependent Steroid Dehydrogenase-Like; SDR31E1; XAP104; H105e3; Sterol-4-Alpha-Carboxylate 3-Dehydrogenase, Decarboxylating; Short Chain Dehydrogenase/Reductase Family 31E, Member 1; Protein H105e3; EC 1.1.1.170; NAD(P) Dependent Steroid Dehydrogenase-Like Protein Transcript;
Immunogen	Epididymis Secretory Sperm Binding Protein; H105E3 A synthesized peptide derived from human NSDHL

KD-Validated Anti-NSDHL Rabbit Monoclonal Antibody - Additional Information

Gene ID 50814 Other Names Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating, 1.1.1.170, Protein H105e3, NSDHL, H105E3

KD-Validated Anti-NSDHL Rabbit Monoclonal Antibody - Protein Information

Name NSDHL

Synonyms H105E3

Function

Catalyzes the NAD(P)(+)-dependent oxidative decarboxylation of the C4 methyl groups of 4-alpha-carboxysterols in post-squalene cholesterol biosynthesis (By similarity). Also plays a role in the regulation of the endocytic trafficking of EGFR (By similarity).

Cellular Location

Endoplasmic reticulum membrane; Single-pass membrane protein. Lipid droplet {ECO:0000250|UniProtKB:Q9R1J0} Note=Trafficking through the Golgi is necessary for ER membrane localization. {ECO:0000250|UniProtKB:Q9R1J0}

Tissue Location

Brain, heart, liver, lung, kidney, skin and placenta

KD-Validated Anti-NSDHL Rabbit Monoclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

KD-Validated Anti-NSDHL Rabbit Monoclonal Antibody - Images

Western blotting analysis using anti-NSDHL antibody (Cat#AGI1609). Total cell lysates (30 µg) from various cell lines were loaded and separated by SDS-PAGE. The blot was incubated with anti-NSDHL antibody (Cat#AGI1609, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

KDa ut sport kDa ut sport kDa ut sport kDa 250 - 150 - 150 - 150 - 100 - 50 - 50 - 50 - 37 - 25 - 25 - 25 - 25 - 25 - 25 - 37 - 25 - 25 - 25 - 37 - 25 - 25 - 25 - 25 - 37 - 25 - 25 - 25 - 100 - 37 - 25 - 25 - 25 - 100 - 37 - 25 - 25 - 100 - 37 - 25 - 25 - 25 - 100 - 37 - 25 - 25 - 25 - 100 - 37 - 25 - 2									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	kDa	h	SHRWA			44	shaw		
25-	250 -				250 -				
25-	150 -				150 -				3
25-	100 -				100 -				ogle
25-		-	-	 Hsp90 α	75 -				hnol
25-						-	_	-NSDHL	right ©2024 Genuin Biotec
20 - 20 -	25 —				25 -				Copyr
20-	20 -				20 -				
					20-				

Western blotting analysis using anti-NSDHL antibody (Cat#AGI1609). NSDHL expression in wild type (WT) and NSDHL shRNA knockdown (KD) HeLa cells with 20 μ g of total cell lysates. β -Tubulin serves as a loading control. The blot was incubated with anti-NSDHL antibody (Cat#AGI1609, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

Flow cytometric analysis of NSDHL expression in HeLa cells using NSDHL antibody (Cat#AGI1609, 1:2,000). Green, isotype control; red, NSDHL.

Immunocytochemical staining of HeLa cells with anti-NSDHL antibody (Cat#AGI1609, 1:1,000). Nuclei were stained blue with DAPI; NSDHL was stained magenta with Alexa Fluor® 647. Images were taken using Leica stellaris 5. Protein abundance based on laser Intensity and smart gain: Medium. Scale bar: 20 μ m.