KD-Validated Anti-BCL10 Immune Signaling Adaptor Rabbit Monoclonal Antibody Rabbit monoclonal antibody Catalog # AGI1832 ### **Specification** # KD-Validated Anti-BCL10 Immune Signaling Adaptor Rabbit Monoclonal Antibody - Product Information Application Primary Accession Reactivity Clonality Isotype Calculated MW Gene Name Aliases WB, FC, ICC 095999 Human Monoclonal Rabbit IgG Predicted, 26 kDa, observed, 26 kDa KDa BCL10 BCL10; BCL10 Immune Signaling Adaptor; CIPER; C-E10; ME10; CLAP; CARMEN; CED-3/ICH-1 Prodomain Homologous E10-Like Regulator; Mammalian CARD-Containing Adapter Molecule E10; CARD-Containing Molecule Enhancing NF-Kappa-B; Caspase-Recruiting Domain-Containing Protein; CARD-Containing Apoptotic Signaling Protein; CARD Containing Molecule Enhancing NF-KB; CARD-Containing Proapoptotic Protein; CARD-Like Apoptotic Protein; B-Cell Lymphoma/Leukemia 10; Cellular Homolog Of VCARMEN; B Cell CLL/Lymphoma 10; Cellular-E10; CCARMEN; HCLAP; BCL10, Immune Signaling Adaptor; B-Cell; CLL/Lymphoma 10; Bcl-10; IMD37 A synthesized peptide derived from human Bcl10 # KD-Validated Anti-BCL10 Immune Signaling Adaptor Rabbit Monoclonal Antibody - Additional Information Gene ID **8915** **Other Names** **Immunogen** B-cell lymphoma/leukemia 10, B-cell CLL/lymphoma 10, Bcl-10, CARD-containing molecule enhancing NF-kappa-B, CARD-like apoptotic protein, hCLAP, CED-3/ICH-1 prodomain homologous E10-like regulator, CIPER, Cellular homolog of vCARMEN, cCARMEN, Cellular-E10, c-E10, Mammalian CARD-containing adapter molecule E10, mE10, BCL10 {ECO:0000303|PubMed:9989495, ECO:0000312|HGNC:HGNC:989} # KD-Validated Anti-BCL10 Immune Signaling Adaptor Rabbit Monoclonal Antibody - Protein Information Name BCL10 {ECO:0000303|PubMed:9989495, ECO:0000312|HGNC:HGNC:989} #### **Function** Plays a key role in both adaptive and innate immune signaling by bridging CARD domain-containing proteins to immune activation (PubMed: 10187770, PubMed:10364242, PubMed:10400625, PubMed:24074955, PubMed:25365219). Acts by channeling adaptive and innate immune signaling downstream of CARD domain-containing proteins CARD9, CARD11 and CARD14 to activate NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:24074955). Recruited by activated CARD domain-containing proteins: homooligomerized CARD domain-containing proteins form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10, subsequent recruitment of MALT1 and formation of a CBM complex (PubMed:24074955). This leads to activation of NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed: 18287044, PubMed:24074955, PubMed:27777308). Activated by CARD9 downstream of C-type lectin receptors; CARD9-mediated signals are essential for antifungal immunity (PubMed: 26488816). Activated by CARD11 downstream of T-cell receptor (TCR) and B-cell receptor (BCR) (PubMed:18264101, PubMed:18287044, PubMed:24074955, PubMed:27777308). Promotes apoptosis, pro-caspase-9 maturation and activation of NF-kappa-B via NIK and IKK (PubMed: 10187815). ### **Cellular Location** Cytoplasm, perinuclear region. Membrane raft. Note=Appears to have a perinuclear, compact and filamentous pattern of expression. Also found in the nucleus of several types of tumor cells. Colocalized with DPP4 in membrane rafts. Tissue Location Ubiquitous.. # KD-Validated Anti-BCL10 Immune Signaling Adaptor Rabbit Monoclonal Antibody - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - <u>Immunofluorescence</u> - Immunoprecipitation - Flow Cytomety - Cell Culture ### KD-Validated Anti-BCL10 Immune Signaling Adaptor Rabbit Monoclonal Antibody - Images Western blotting analysis using anti-BCL10 antibody (Cat#AGI1832). Total cell lysates (30 μ g) from various cell lines were loaded and separated by SDS-PAGE. The blot was incubated with anti-BCL10 antibody (Cat#AGI1832, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively. Western blotting analysis using anti-BCL10 antibody (Cat#AGI1832). BCL10 expression in wild type (WT) and BCL10 shRNA knockdown (KD) HeLa cells with 20 μ g of total cell lysates. β -Tubulin serves as a loading control. The blot was incubated with anti-BCL10 antibody (Cat#AGI1832, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively. Flow cytometric analysis of BCL10 expression in HepG2 cells using anti-BCL10 antibody (Cat#AGI1832, 1:2,000). Green, isotype control; red, BCL10. Immunocytochemical staining of HepG2 cells with anti-BCL10 antibody (Cat#AGI1832, 1:1,000). Nuclei were stained blue with DAPI; BCL10 was stained magenta with Alexa Fluor® 647. Images were taken using Leica stellaris 5. Protein abundance based on laser Intensity and smart gain: Medium. Scale bar: $20~\mu m$.