

KD-Validated Anti-TANK Binding Kinase 1 Rabbit Monoclonal Antibody Rabbit monoclonal antibody

Catalog # AGI1843

Specification

KD-Validated Anti-TANK Binding Kinase 1 Rabbit Monoclonal Antibody - Product Information

Application Primary Accession	WB, FC, ICC O9UHD2
Reactivity	Rat, Human, Mouse
Clonality	Monoclonal
Isotype	Rabbit IgG
Calculated MW	Predicted, 84 kDa, observed, 74 kDa KDa
Gene Name	TBK1
Aliases	TBK1; TANK Binding Kinase 1; NAK;
	Serine/Threonine-Protein Kinase TBK1;
	NF-Kappa-B-Activating Kinase;
	TANK-Binding Kinase 1; T2K;
	NF-KB-Activating Kinase; EC 2.7.11.1; EC
	2.7.11; FTDALS4; IIAE8
Immunogen	A synthesized peptide derived from human
-	TBK1

KD-Validated Anti-TANK Binding Kinase 1 Rabbit Monoclonal Antibody - Additional Information

Gene ID 29110 Other Names Serine/threonine-protein kinase TBK1, 2.7.11.1, NF-kappa-B-activating kinase, T2K, TANK-binding kinase 1, TBK1 {ECO:0000303|PubMed:10581243, ECO:0000312|HGNC:HGNC:11584}

KD-Validated Anti-TANK Binding Kinase 1 Rabbit Monoclonal Antibody - Protein Information

Name TBK1 {ECO:0000303|PubMed:10581243, ECO:0000312|HGNC:HGNC:11584}

Function

Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:10581243, PubMed:12692549, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:18583960, PubMed:18583960, PubMed:18583960, PubMed:18583960, PubMed:18583960, PubMed:21138416, PubMed:<a href="http://www.uniprot.org/citations/23453971"

target=" blank">23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453971, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing- complexes (PubMed: 21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed: 21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed: 27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed: 16155125). Plays an

essential role in the TLR3- and IFN- dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:<a href="http://www.uniprot.org/citations/29150432"

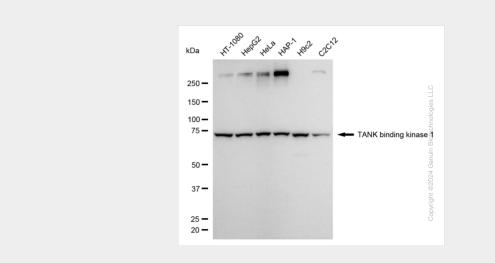
target="_blank">29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1- mediated cell death, probably acting via CYLD

phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603).

Cellular Location

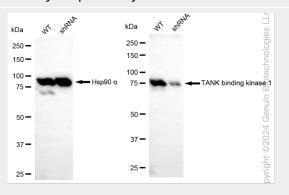
Cytoplasm. Note=Upon mitogen stimulation or triggering of the immune system, TBK1 is recruited to the exocyst by EXOC2.

Tissue Location

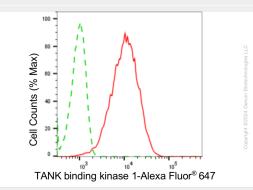

Ubiquitous with higher expression in testis. Expressed in the ganglion cells, nerve fiber layer and microvasculature of the retina.

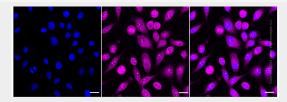
KD-Validated Anti-TANK Binding Kinase 1 Rabbit Monoclonal Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.


- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

KD-Validated Anti-TANK Binding Kinase 1 Rabbit Monoclonal Antibody - Images




Western blotting analysis using anti-TANK binding kinase 1 antibody (Cat#AGI1843). Total cell lysates (30 µg) from various cell lines were loaded and separated by SDS-PAGE. The blot was incubated with anti-TANK binding kinase 1 antibody (Cat#AGI1843, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

Western blotting analysis using anti-TANK binding kinase 1 antibody (Cat#AGI1843). TANK binding kinase 1 expression in wild type (WT) and TANK binding kinase 1 (TBK1) shRNA knockdown (KD) HeLa cells with 20 μ g of total cell lysates. Hsp90 α serves as a loading control. The blot was incubated with anti-TANK binding kinase 1 antibody (Cat#AGI1843, 1:5,000) and HRP-conjugated goat anti-rabbit secondary antibody respectively.

Flow cytometric analysis of TANK binding kinase 1 expression in HepG2 cells using anti-TANK binding kinase 1 antibody (Cat#AGI1843, 1:2,000). Green, isotype control; red, TANK binding kinase 1.

Immunocytochemical staining of HepG2 cells with anti-TANK binding kinase 1 antibody (Cat#AGI1843, 1:1,000). Nuclei were stained blue with DAPI; TANK binding kinase 1 was stained magenta with Alexa Fluor® 647. Images were taken using Leica stellaris 5. Protein abundance based on laser Intensity and smart gain: Medium. Scale bar: 20 µm.