HLA-DRB (MHC II) Antibody - With BSA and Azide Mouse Monoclonal Antibody [Clone SPM288] Catalog # AH11443 ## **Specification** ### HLA-DRB (MHC II) Antibody - With BSA and Azide - Product Information Application Primary Accession Other Accession Reactivity Host Clonality Isotype Calculated MW WB, IHC, IF, FC P01911 <u>3123</u>, <u>534322</u> Human, Mouse, Monkey Mouse Monoclonal Monocionai Monso / IgG2b - kar Mouse / IgG2b, kappa 28kDa (beta chain) KDa # HLA-DRB (MHC II) Antibody - With BSA and Azide - Additional Information ### **Gene ID 3123** #### **Other Names** HLA class II histocompatibility antigen, DRB1-15 beta chain, DW2.2/DR2.2, MHC class II antigen DRB1*15, HLA-DRB1, HLA-DRB2 ### **Application Note** WB~~1:1000

<span class</pre> ="dilution_IHC">IHC~~1:100~500<br \>IF~~1:50~200
span class ="dilution FC">FC~~1:10~50 ## Storage Store at 2 to 8°C. Antibody is stable for 24 months. ### **Precautions** HLA-DRB (MHC II) Antibody - With BSA and Azide is for research use only and not for use in diagnostic or therapeutic procedures. # HLA-DRB (MHC II) Antibody - With BSA and Azide - Protein Information ## Name HLA-DRB1 (HGNC:4948) ### **Function** A beta chain of antigen-presenting major histocompatibility complex class II (MHCII) molecule. In complex with the alpha chain HLA- DRA, displays antigenic peptides on professional antigen presenting cells (APCs) for recognition by alpha-beta T cell receptor (TCR) on HLA-DRB1-restricted CD4-positive T cells. This guides antigen-specific T-helper effector functions, both antibody-mediated immune response and macrophage activation, to ultimately eliminate the infectious agents and transformed cells (PubMed:15265931, PubMed:16148104, PubMed:22327072, PubMed:27591323, PubMed:29884618, PubMed:31495665, PubMed:8642306). Typically presents extracellular peptide antigens of 10 to 30 amino acids that arise from proteolysis of endocytosed antigens in lysosomes (PubMed:814581931495665). Presents peptides derived from intracellular proteins that are trapped in autolysosomes after macroautophagy, a mechanism especially relevant for T cell selection in the thymus and central immune tolerance (PubMed:17182262, PubMed:23783831). The selection of the immunodominant epitopes follows two processing modes: 'bind first, cut/trim later' for pathogen-derived antigenic peptides and 'cut first, bind later' for autoantigens/self-peptides (PubMed:25413013). The anchor residue at position 1 of the peptide N-terminus, usually a large hydrophobic residue, is essential for high affinity interaction with MHCII molecules (PubMed:8145819). #### **Cellular Location** Cell membrane; Single-pass type I membrane protein. Endoplasmic reticulum membrane; Single-pass type I membrane protein. Lysosome membrane; Single-pass type I membrane protein. Late endosome membrane; Single-pass type I membrane protein. Autolysosome membrane Note=The MHC class II complex transits through a number of intracellular compartments in the endocytic pathway until it reaches the cell membrane for antigen presentation (PubMed:18305173). Component of immunological synapses at the interface between T cell and APC (PubMed:29884618). # **Tissue Location** Expressed in professional APCs: monocyte/macrophages, dendritic cells and B cells (at protein level) (PubMed:19830726, PubMed:23783831, PubMed:31495665). Expressed in thymic epithelial cells (at protein level) (PubMed:23783831) ### HLA-DRB (MHC II) Antibody - With BSA and Azide - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - Immunoprecipitation - Flow Cytomety - Cell Culture # HLA-DRB (MHC II) Antibody - With BSA and Azide - Images Formalin-fixed, paraffin-embedded human Tonsil stained with HLA-DRB Monoclonal Antibody (SPM288). # HLA-DRB (MHC II) Antibody - With BSA and Azide - Background This MAb reacts with a 28kDa chain of HLA-DRB1 antigen, a member of MHC class II molecules. It does not cross react with HLA-DP and HLA-DQ. The L243 antibody recognizes a different epitope than the LN3 monoclonal antibody, and these antibodies do not cross-block binding to each other's respective epitopes. HLA-DR is a heterodimeric cell surface glycoprotein comprised of a 36kDa alpha (heavy) chain and a 28kDa beta (light) chain. It is expressed on B-cells, activated T-cells, monocytes/macrophages, dendritic cells and other non-professional APCs. In conjunction with the CD3/TCR complex and CD4 molecules, HLA-DR is critical for efficient peptide presentation to CD4+T cells. It is an excellent histiocytic marker in paraffin sections producing intense staining. True histiocytic neoplasms are similarly positive. HLA-DR antigens also occur on a variety of epithelial cells and their corresponding neoplastic counterparts. Loss of HLA-DR expression is related to tumor microenvironment and predicts adverse outcome in diffuse large B-cell lymphoma. # HLA-DRB (MHC II) Antibody - With BSA and Azide - References Marder RJ, et al. 1985. Lab. Invest. 52:497.2. Norton AJ and Isaacson PG. 1987. Am. J. Pathol. 128:225.3. Hua ZX, et al. 1998. Hum. Pathol. 29(12):1441