

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide Mouse Monoclonal Antibody [Clone PDCD1/922] Catalog # AH12053

Specification

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - Product Information

Application
Primary Accession
Other Accession
Reactivity
Host
Clonality
Isotype

O15116
5133, 158297
Human
Mouse
Monoclonal
Mouse / IgG1, kappa
55kDa KDa

IHC, IF, FC

Calculated MW

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - Additional Information

Gene ID 5133

Other Names

Programmed cell death protein 1, Protein PD-1, hPD-1, CD279, PDCD1, PD1

Application Note

IHC \sim 1:100 \sim 500<br \> <span class
="dilution IF">IF \sim 1:50 \sim 200<br \> FC \sim 1:10 \sim 50

Storage

Store at 2 to 8°C. Antibody is stable for 24 months.

Precautions

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide is for research use only and not for use in diagnostic or therapeutic procedures.

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - Protein Information

Name PDCD1 {ECO:0000303|PubMed:7851902, ECO:0000312|HGNC:HGNC:8760}

Function

Inhibitory receptor on antigen activated T-cells that plays a critical role in induction and maintenance of immune tolerance to self (PubMed:21276005, PubMed:37208329). Delivers inhibitory signals upon binding to ligands CD274/PDCD1L1 and CD273/PDCD1LG2 (PubMed:21276005). Following T-cell receptor (TCR) engagement, PDCD1 associates with CD3- TCR in the immunological synapse

and directly inhibits T-cell activation (By similarity). Suppresses T-cell activation through the recruitment of PTPN11/SHP-2: following ligand-binding, PDCD1 is phosphorylated within the ITSM motif, leading to the recruitment of the protein tyrosine phosphatase PTPN11/SHP-2 that mediates dephosphorylation of key TCR proximal signaling molecules, such as ZAP70, PRKCQ/PKCtheta and CD247/CD3zeta (By similarity).

Cellular Location

Cell membrane; Single-pass type I membrane protein

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - Images

Formalin-fixed, paraffin-embedded human Tonsil stained with PD1 (CD279) Monoclonal Antibody (PDCD1/922).

Tel: 858.875.1900 Fax: 858.875.1999

Formalin-fixed, paraffin-embedded human Tonsil stained with PD1 (CD279) Monoclonal Antibody (PDCD1/922).

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - Background

PDCD-1 (programmed cell death-1 protein), also designated CD279, is a type I transmembrane receptor and a member of the immunoglobin gene superfamily. It is expressed on activated T-cells, B-cells, and myeloid cells. Anti-PDCD-1 is a marker of angioimmunoblastic lymphoma and suggests a unique cell of origin for this neoplasm. Unlike CD10 and BCL6, PDCD-1 is expressed by few B-cells, so anti-PDCD-1 may be a more specific and useful diagnostic marker in angioimmunoblastic lymphoma. In addition, PDCD-1 expression provides evidence that angioimmunoblastic lymphoma is a neoplasm derived from germinal center-associated T-cells.

PD1 / PDCD1 / CD279 (Programmed Cell Death 1) Antibody - With BSA and Azide - References

Ishida, Y., et al. 1992. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11: 3887-3895.