

CD22 / BL-CAM Antibody - With BSA and Azide

Mouse Monoclonal Antibody [Clone FR10B4] Catalog # AH12673

Specification

CD22 / BL-CAM Antibody - With BSA and Azide - Product Information

Application IF, FC
Primary Accession P20273
Other Accession 933, 579691
Reactivity Human
Host Mouse
Clonality Monoclonal

Isotype Mouse / IgG1, kappa Calculated MW 130-140kDa KDa

CD22 / BL-CAM Antibody - With BSA and Azide - Additional Information

Gene ID 933

Other Names

B-cell receptor CD22, B-lymphocyte cell adhesion molecule, BL-CAM, Sialic acid-binding Ig-like lectin 2, Siglec-2, T-cell surface antigen Leu-14, CD22, CD22, SIGLEC2

Application Note

IF~~1:50~200<br \> FC~~1:10~50

Storage

Store at 2 to 8°C. Antibody is stable for 24 months.

Precautions

CD22 / BL-CAM Antibody - With BSA and Azide is for research use only and not for use in diagnostic or therapeutic procedures.

CD22 / BL-CAM Antibody - With BSA and Azide - Protein Information

Name CD22 {ECO:0000303|PubMed:1691828, ECO:0000312|HGNC:HGNC:1643}

Function

Most highly expressed siglec (sialic acid-binding immunoglobulin-like lectin) on B-cells that plays a role in various aspects of B-cell biology including differentiation, antigen presentation, and trafficking to bone marrow (PubMed:34330755, PubMed:8627166). Binds to alpha 2,6-linked sialic acid residues of surface molecules such as CD22 itself, CD45 and IgM in a cis configuration. Can also bind to ligands on other cells as an adhesion molecule in a trans configuration (PubMed:20172905). Acts as an inhibitory coreceptor on the surface of B-cells and inhibits B-cell receptor induced signaling,

characterized by inhibition of the calcium mobilization and cellular activation. Mechanistically, the immunoreceptor tyrosine-based inhibitory motif domain is phosphorylated by the Src kinase LYN, which in turn leads to the recruitment of the protein tyrosine phosphatase 1/PTPN6, leading to the negative regulation of BCR signaling (PubMed:8627166). If this negative signaling from is of sufficient strength, apoptosis of the B-cell can be induced (PubMed:20516366).

Cellular Location

Cell membrane; Single-pass type I membrane protein

Tissue Location B-lymphocytes.

CD22 / BL-CAM Antibody - With BSA and Azide - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

CD22 / BL-CAM Antibody - With BSA and Azide - Images

CD22 / BL-CAM Antibody - With BSA and Azide - Background

Recognizes a protein of 130-140kDa, identified as CD22 (also known as BL-CAM). CD22 expression is restricted to normal and neoplastic B cells and is absent from other haemopoietic cell types. In B-cell ontogeny, CD22 is first expressed in the cytoplasm of pro-B and pre-B cells, and on the surface as B cells mature to become IgD+. It is not expressed by plasma cells, CD22 is found highly expressed in follicular mantle and marginal zone B-cells, and while germinal center B-cells are relatively weak. CD22 is a member of the immunoglobulin superfamily and serves as an adhesion receptor for sialic acid-bearing ligands expressed on erythrocytes and all leukocyte classes. It also associates with tyrosine kinases and play a role in signal transduction and B-cell activation.

CD22 / BL-CAM Antibody - With BSA and Azide - References

Campana, D., et al., in: Knapp, W., et al. (eds), Leucocyte Typing IV, Oxford Univ. Press, pp 190-192