

FZD5 / Frizzled 5 Antibody (N-Terminus) Rabbit Polyclonal Antibody Catalog # ALS10761

Specification

FZD5 / Frizzled 5 Antibody (N-Terminus) - Product Information

Application Primary Accession Reactivity Host Clonality Calculated MW Dilution IHC-P, E <u>Q13467</u> Human, Rabbit, Monkey, Pig, Bovine, Dog Rabbit Polyclonal 65kDa KDa IHC-P~~N/A E~~N/A

FZD5 / Frizzled 5 Antibody (N-Terminus) - Additional Information

Gene ID 7855

Other Names Frizzled-5, Fz-5, hFz5, FzE5, FZD5, C2orf31

Target/Specificity Human FZD5 / Frizzled 5. BLAST analysis of the peptide immunogen showed no homology with other human proteins.

Reconstitution & Storage Long term: -70°C; Short term: +4°C

Precautions FZD5 / Frizzled 5 Antibody (N-Terminus) is for research use only and not for use in diagnostic or therapeutic procedures.

FZD5 / Frizzled 5 Antibody (N-Terminus) - Protein Information

Name FZD5

Synonyms C2orf31

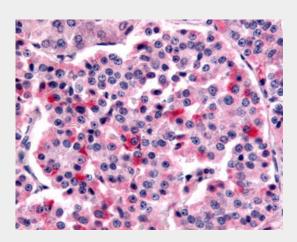
Function

Receptor for Wnt proteins (PubMed:10097073, PubMed:20530549, PubMed:26908622, PubMed:9054360). Functions in the canonical Wnt/beta- catenin signaling pathway. In vitro activates WNT2, WNT10B, WNT5A, but not WNT2B or WNT4 signaling (By similarity). In neurons, activation by WNT7A promotes formation of synapses (PubMed:20530549). May be

involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues (Probable). Plays a role in yolk sac angiogenesis and in placental vascularization (By similarity). Plays a role in ocular development (PubMed:26908622).

Cellular Location

Cell membrane; Multi-pass membrane protein {ECO:0000250|UniProtKB:Q8CHL0}. Golgi apparatus membrane {ECO:0000250|UniProtKB:Q9EQD0}; Multi-pass membrane protein {ECO:0000250|UniProtKB:Q9EQD0}. Synapse {ECO:0000250|UniProtKB:Q8CHL0}. Perikaryon {ECO:0000250|UniProtKB:Q8CHL0}. Cell projection, dendrite {ECO:0000250|UniProtKB:Q8CHL0}. Cell projection, axon {ECO:0000250|UniProtKB:Q8CHL0}. Note=Localized at the plasma membrane and also found at the Golgi apparatus. {ECO:0000250|UniProtKB:Q9EQD0}


Volume 50 μl

FZD5 / Frizzled 5 Antibody (N-Terminus) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- <u>Blocking Peptides</u>
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

FZD5 / Frizzled 5 Antibody (N-Terminus) - Images

Anti-FZD5 / Frizzled 5 antibody ALS10761 IHC of human pancreas. FZD5 / Frizzled 5 Antibody (N-Terminus) - Background

Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK- 3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to

involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Interacts specifically with Wnt5A to induce the beta- catenin pathway.

FZD5 / Frizzled 5 Antibody (N-Terminus) - References

Wang Y.,et al.J. Biol. Chem. 271:4468-4476(1996). Saitoh T.,et al.Int. J. Oncol. 19:105-110(2001). Ota T.,et al.Nat. Genet. 36:40-45(2004). Hillier L.W.,et al.Nature 434:724-731(2005). Tanaka S.,et al.Proc. Natl. Acad. Sci. U.S.A. 95:10164-10169(1998).