

FZD8 / Frizzled 8 Antibody (N-Terminus) Rabbit Polyclonal Antibody Catalog # ALS10781

Specification

FZD8 / Frizzled 8 Antibody (N-Terminus) - Product Information

Application Primary Accession Reactivity Host Clonality Calculated MW Dilution IHC-P <u>Q9H461</u> Human, Mouse, Monkey Rabbit Polyclonal 73kDa KDa IHC-P~~N/A

FZD8 / Frizzled 8 Antibody (N-Terminus) - Additional Information

Gene ID 8325

Other Names Frizzled-8, Fz-8, hFz8, FZD8

Target/Specificity Human FZD8 / Frizzled 8. BLAST analysis of the peptide immunogen showed no homology with other human proteins.

Reconstitution & Storage Long term: -70°C; Short term: +4°C

Precautions FZD8 / Frizzled 8 Antibody (N-Terminus) is for research use only and not for use in diagnostic or therapeutic procedures.

FZD8 / Frizzled 8 Antibody (N-Terminus) - Protein Information

Name FZD8

Function

Receptor for Wnt proteins. Component of the Wnt-Fzd-LRP5-LRP6 complex that triggers beta-catenin signaling through inducing aggregation of receptor-ligand complexes into ribosome-sized signalosomes. The beta-catenin canonical signaling pathway leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Coreceptor along with RYK of Wnt proteins, such as WNT1.

Cellular Location

Membrane; Multi-pass membrane protein. Golgi apparatus. Cell membrane; Multi-pass membrane protein. Note=Colocalizes with GOPC at the Golgi apparatus.

Tissue Location

Most abundant in fetal kidney, followed by brain and lung. In adult tissues, expressed in kidney, heart, pancreas and skeletal muscle

Volume 50 μl

FZD8 / Frizzled 8 Antibody (N-Terminus) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

FZD8 / Frizzled 8 Antibody (N-Terminus) - Images

Anti-FZD8 / Frizzled 8 antibody IHC of human Lymph Node, Hodgkins Lymphoma.

Anti-FZD8 / Frizzled 8 antibody ALS10781 IHC of human pancreas, islet of Langerhans.

Anti-FZD8 / Frizzled 8 antibody IHC of human Lung, Non-Small Cell Carcinoma.

Anti-FZD8 / Frizzled 8 antibody IHC of human Ovary, Carcinoma.

FZD8 / Frizzled 8 Antibody (N-Terminus) - Background

Receptor for Wnt proteins. Component of the Wnt-Fzd- LRP5-LRP6 complex that triggers beta-catenin signaling through inducing aggregation of receptor-ligand complexes into ribosomesized signalosomes. The beta-catenin canonical signaling pathway leads to the activation of disheveled proteins, inhibition of GSK- 3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Coreceptor along with RYK of Wnt proteins, such as WNT1.

FZD8 / Frizzled 8 Antibody (N-Terminus) - References

Saitoh T., et al.Int. J. Oncol. 18:991-996(2001). Deloukas P., et al.Nature 429:375-381(2004). Semenov M.V., et al.Curr. Biol. 11:951-961(2001). Li X., et al.Protein Sci. 15:2149-2158(2006). Hao H.X., et al.Nature 485:195-200(2012).