

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) Rabbit Polyclonal Antibody Catalog # ALS11145

Specification

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - Product Information

Application Primary Accession Reactivity Host Clonality Calculated MW Dilution IHC-P <u>002297</u> Human Rabbit Polyclonal 70kDa KDa IHC-P~~N/A

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - Additional Information

Gene ID 3084

Other Names

Pro-neuregulin-1, membrane-bound isoform, Pro-NRG1, Neuregulin-1, Acetylcholine receptor-inducing activity, ARIA, Breast cancer cell differentiation factor p45, Glial growth factor, Heregulin, HRG, Neu differentiation factor, Sensory and motor neuron-derived factor, NRG1, GGF, HGL, HRGA, NDF, SMDF

Target/Specificity

Human NRG1. BLAST analysis of the peptide immunogen showed no homology with other human proteins.

Reconstitution & Storage Long term: -70°C; Short term: +4°C

Precautions

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) is for research use only and not for use in diagnostic or therapeutic procedures.

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - Protein Information

Name NRG1

Synonyms GGF, HGL, HRGA, NDF, SMDF

Function

Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing

differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development. Binds to ERBB4 (PubMed:10867024, PubMed:7902537). Binds to ERBB3 (PubMed:20682778). Binds to ERBB3 (PubMed:20682778). Acts as a ligand for integrins and binds (via EGF domain) to integrins ITGAV:ITGB3 or ITGA6:ITGB4. Its binding to integrins and subsequent ternary complex formation with integrins and ERRB3 are essential for NRG1-ERBB signaling. Induces the phosphorylation and activation of MAPK3/ERK1, MAPK1/ERK2 and AKT1 (PubMed:20682778" target="_blank">20682778" target="_blank">20682778" target="_blank">20682778" target="_blank">20682778" target="_blank">20682778). Binds to ERBB3 are essential for NRG1-ERBB signaling. Induces the phosphorylation and activation of MAPK3/ERK1, MAPK1/ERK2 and AKT1 (PubMed:20682778). Ligand-dependent ERBB4 endocytosis is essential for the NRG1-mediated activation of these kinases in neurons (By similarity).

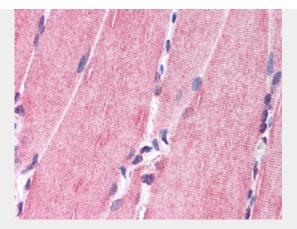
Cellular Location

[Pro-neuregulin-1, membrane-bound isoform]: Cell membrane; Single-pass type I membrane protein. Note=Does not seem to be active [Isoform 8]: Nucleus. Note=May be nuclear. [Isoform 10]: Membrane; Single-pass type I membrane protein. Note=May possess an internal uncleaved signal sequence

Tissue Location

Type I isoforms are the predominant forms expressed in the endocardium. Isoform alpha is expressed in breast, ovary, testis, prostate, heart, skeletal muscle, lung, placenta liver, kidney, salivary gland, small intestine and brain, but not in uterus, stomach, pancreas, and spleen. Isoform 3 is the predominant form in mesenchymal cells and in non-neuronal organs, whereas isoform 6 is the major neuronal form. Isoform 8 is expressed in spinal cord and brain. Isoform 9 is the major form in skeletal muscle cells; in the nervous system it is expressed in spinal cord and brain. Also detected in adult heart, placenta, lung, liver, kidney, and pancreas. Isoform 10 is expressed in nervous system: spinal cord motor neurons, dorsal root ganglion neurons, and brain. Predominant isoform expressed in sensory and motor neurons. Not detected in adult heart, placenta, lung, liver, skeletal muscle, kidney, and pancreas. Not expressed in fetal lung, liver and kidney. Type IV isoforms are brain-specific

Volume 50 μl


NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - Images

Anti-NRG1 antibody ALS11145 IHC of human skeletal muscle. NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - Background

Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development.

NRG1 / Heregulin / Neuregulin Antibody (N-Terminus) - References

Holmes W.E., et al. Science 256:1205-1210(1992). Wen D., et al. Mol. Cell. Biol. 14:1909-1919(1994). Marchionni M.A., et al. Nature 362:312-318(1993). Ho W.-H., et al.J. Biol. Chem. 270:14523-14532(1995). Ota T., et al. Nat. Genet. 36:40-45(2004).