TLR2 Antibody (N-Terminus) Rabbit Polyclonal Antibody Catalog # ALS11725 ## **Specification** ### TLR2 Antibody (N-Terminus) - Product Information Application IHC Primary Accession 060603 Reactivity Human, Mouse Host Rabbit Clonality Polyclonal Calculated MW 90kDa KDa ## TLR2 Antibody (N-Terminus) - Additional Information **Gene ID** 7097 #### **Other Names** Toll-like receptor 2, Toll/interleukin-1 receptor-like protein 4, CD282, TLR2, TIL4 # Target/Specificity peptide corresponding to 14 amino acids near the amino terminus of human TLR2 #### **Reconstitution & Storage** Short term 4°C, long term aliquot and store at -20°C, avoid freeze thaw cycles. Store undiluted. #### **Precautions** TLR2 Antibody (N-Terminus) is for research use only and not for use in diagnostic or therapeutic procedures. # TLR2 Antibody (N-Terminus) - Protein Information Name TLR2 (HGNC:11848) **Synonyms TIL4** ## **Function** Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other microbial cell wall components. Cooperates with TLR1 or TLR6 to mediate the innate immune response to bacterial lipoproteins or lipopeptides (PubMed:21078852, PubMed:17889651). Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. May also activate immune cells and promote apoptosis in response to the lipid moiety of lipoproteins (PubMed:10426995, PubMed:10426996). Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR6 (PubMed:11441107). Stimulation of monocytes in vitro with M.tuberculosis PstS1 induces p38 MAPK and ERK1/2 activation primarily via this receptor, but also partially via TLR4 (PubMed:16622205). MAPK activation in response to bacterial peptidoglycan also occurs via this receptor (PubMed: 16622205). Acts as a receptor for M.tuberculosis lipoproteins LprA, LprG, LpqH and PstS1, some lipoproteins are dependent on other coreceptors (TLR1, CD14 and/or CD36); the lipoproteins act as agonists to modulate antigen presenting cell functions in response to the pathogen (PubMed: 19362712). M.tuberculosis HSP70 (dnaK) but not HSP65 (groEL-2) acts via this protein to stimulate NF-kappa-B expression (PubMed:15809303). Recognizes M.tuberculosis major T-antigen EsxA (ESAT-6) which inhibits downstream MYD88-dependent signaling (shown in mouse) (By similarity). Forms activation clusters composed of several receptors depending on the ligand, these clusters trigger signaling from the cell surface and subsequently are targeted to the Golgi in a lipid-raft dependent pathway. Forms the cluster TLR2:TLR6:CD14:CD36 in response to diacylated lipopeptides and TLR2:TLR1:CD14 in response to triacylated lipopeptides (PubMed: 16880211). Required for #### **Cellular Location** Membrane {ECO:0000250|UniProtKB:Q9QUN7}; Single- pass type I membrane protein. Cytoplasmic vesicle, phagosome membrane {ECO:0000250|UniProtKB:Q9QUN7}; Single-pass type I membrane protein. Membrane raft. Note=Does not reside in lipid rafts before stimulation but accumulates increasingly in the raft upon the presence of the microbial ligand. In response to diacylated lipoproteins, TLR2:TLR6 heterodimers are recruited in lipid rafts, this recruitment determines the intracellular targeting to the Golgi apparatus. Triacylated lipoproteins induce the same mechanism for TLR2:TLR1 heterodimers. normal uptake of M.tuberculosis, a process that is inhibited by M.tuberculosis LppM (By similarity). ### **Tissue Location** Highly expressed in peripheral blood leukocytes, in particular in monocytes, in bone marrow, lymph node and in spleen. Also detected in lung and in fetal liver. Levels are low in other tissues # **TLR2 Antibody (N-Terminus) - Protocols** Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - <u>Immunohistochemistry</u> - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture # TLR2 Antibody (N-Terminus) - Images Anti-TLR2 antibody IHC of human heart. # TLR2 Antibody (N-Terminus) - Background Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other microbial cell wall components. Cooperates with TLR1 or TLR6 to mediate the innate immune response to bacterial lipoproteins or lipopeptides. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. May also promote apoptosis in response to lipoproteins. Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR6. # **TLR2 Antibody (N-Terminus) - References** Chaudhary P.M., et al. Blood 91:4020-4027(1998). Rock F.L., et al. Proc. Natl. Acad. Sci. U.S.A. 95:588-593(1998). Yang R.-B., et al. Nature 395:284-288(1998). Nakajima T., et al. Immunogenetics 60:727-735(2008). Georgel P., et al. PLoS ONE 4:E7803-E7803(2009).