

ANXA1 / Annexin A1 Antibody (C-Terminus)

Goat Polyclonal Antibody Catalog # ALS12623

Specification

ANXA1 / Annexin A1 Antibody (C-Terminus) - Product Information

Application WB, IHC-P, E

Primary Accession P04083

Reactivity Human, Mouse, Rat, Rabbit, Hamster,

Monkey, Pig, Horse, Bovine, Guinea Pig,

Dog

Host Goat
Clonality Polyclonal
Calculated MW 39kDa KDa
Dilution WB~~1:1000

IHC-P~~N/A E~~N/A

ANXA1 / Annexin A1 Antibody (C-Terminus) - Additional Information

Gene ID 301

Other Names

Annexin A1, Annexin I, Annexin-1, Calpactin II, Calpactin-2, Chromobindin-9, Lipocortin I, Phospholipase A2 inhibitory protein, p35, ANXA1, ANX1, LPC1

Target/Specificity

Human ANXA1 / Annexin A1.

Reconstitution & Storage

Store at -20°C. Minimize freezing and thawing.

Precautions

ANXA1 / Annexin A1 Antibody (C-Terminus) is for research use only and not for use in diagnostic or therapeutic procedures.

ANXA1 / Annexin A1 Antibody (C-Terminus) - Protein Information

Name ANXA1

Synonyms ANX1, LPC1

Function

Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that

are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed: 17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into

Th2 cells (PubMed: 17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed: 19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed: 2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity).

Cellular Location

Nucleus. Cytoplasm. Cell projection, cilium {ECO:0000250|UniProtKB:P46193}. Cell membrane. Membrane; Peripheral membrane protein. Endosome membrane

{ECO:0000250|UniProtKB:P07150}; Peripheral membrane protein

{ECO:0000250|UniProtKB:P07150}. Basolateral cell membrane

{ECO:0000250|UniProtKB:P51662}. Apical cell membrane {ECO:0000250|UniProtKB:P10107}. Lateral cell membrane {ECO:0000250|UniProtKB:P10107}. Secreted. Secreted, extracellular space. Cell membrane; Peripheral membrane protein; Extracellular side. Secreted, extracellular exosome. Cytoplasmic vesicle, secretory vesicle lumen. Cell projection, phagocytic cup {ECO:0000250|UniProtKB:P10107}. Early endosome {ECO:0000250|UniProtKB:P19619}. Cytoplasmic vesicle membrane {ECO:0000250|UniProtKB:P19619}; Peripheral membrane protein {ECO:0000250|UniProtKB:P19619}. Note=Secreted, at least in part via exosomes and other secretory vesicles. Detected in exosomes and other extracellular vesicles (PubMed:25664854). Alternatively, the secretion is dependent on protein unfolding and facilitated by the cargo receptor TMED10; it results in the protein translocation from the cytoplasm into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) followed by vesicle entry and secretion (PubMed:32272059). Detected in gelatinase granules in resting neutrophils (PubMed:10772777). Secretion is increased in response to wounding and inflammation (PubMed:25664854). Secretion is increased upon T-cell activation (PubMed:17008549). Neutrophil adhesion to endothelial cells stimulates secretion via gelatinase granules, but foreign particle phagocytosis has no effect

(PubMed:10772777). Colocalizes with actin fibers at phagocytic cups (By similarity). Displays calcium-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678) {ECO:0000250|UniProtKB:P10107, ECO:0000269|PubMed:10772777,

ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:2532504,

ECO:0000269|PubMed:25664854, ECO:0000269|PubMed:32272059,

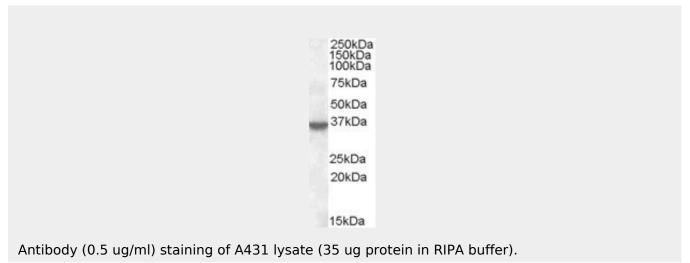
ECO:0000269|PubMed:8557678}

Tissue Location

Detected in resting neutrophils (PubMed:10772777). Detected in peripheral blood T-cells (PubMed:17008549). Detected in extracellular vesicles in blood serum from patients with inflammatory bowel disease, but not in serum from healthy donors (PubMed:25664854) Detected in placenta (at protein level) (PubMed:2532504). Detected in liver.

ANXA1 / Annexin A1 Antibody (C-Terminus) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot

Tel: 858.875.1900 Fax: 858.875.1999

- Immunohistochemistry
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

ANXA1 / Annexin A1 Antibody (C-Terminus) - Images

ANXA1 / Annexin A1 Antibody (C-Terminus) - Background

Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis. This protein regulates phospholipase A2 activity. It seems to bind from two to four calcium ions with high affinity.

ANXA1 / Annexin A1 Antibody (C-Terminus) - References

Wallner B.P., et al. Nature 320:77-81(1986). Kovacic R.T., et al. Biochemistry 30:9015-9021(1991). Arcone R., et al. Eur. J. Biochem. 211:347-355(1993). Varticovski L., et al. Biochemistry 27:3682-3690(1988). Biemann K., et al. Science 237:992-998(1987).