

## **MBD2 Antibody (Internal)**

Goat Polyclonal Antibody Catalog # ALS12862

## **Specification**

### MBD2 Antibody (Internal) - Product Information

Application IHC
Primary Accession O9UBB5

Reactivity Human, Mouse, Rat, Rabbit, Hamster,

Monkey, Pig, Horse, Bovine, Dog

Host Goat
Clonality Polyclonal
Calculated MW 43kDa KDa

## MBD2 Antibody (Internal) - Additional Information

#### **Gene ID 8932**

#### **Other Names**

Methyl-CpG-binding domain protein 2, Demethylase, DMTase, Methyl-CpG-binding protein MBD2, MBD2

## **Target/Specificity**

Human MBD2. This antibody is expected to resognize isoform 1 (NP 003918.1) only.

# **Reconstitution & Storage**

Store at -20°C. Minimize freezing and thawing.

## **Precautions**

MBD2 Antibody (Internal) is for research use only and not for use in diagnostic or therapeutic procedures.

### MBD2 Antibody (Internal) - Protein Information

### Name MBD2 (HGNC:6917)

## **Function**

Binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides (PubMed:<a href="http://www.uniprot.org/citations/9774669" target="\_blank">9774669</a>). Binds hemimethylated DNA as well (PubMed:<a href="http://www.uniprot.org/citations/10947852" target="\_blank">10947852</a>, PubMed:<a href="http://www.uniprot.org/citations/24307175" target="\_blank">24307175</a>). Recruits histone deacetylases and DNA methyltransferases to chromatin (PubMed:<a href="http://www.uniprot.org/citations/10471499" target="\_blank">10471499</a>, PubMed:<a href="http://www.uniprot.org/citations/10947852" target="\_blank">10947852</a>). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:<a href="http://www.uniprot.org/citations/16428440" target=" blank">16428440</a>, PubMed:<a href="http://www.uniprot.org/citations/28977666"



target="\_blank">28977666</a>). Acts as a transcriptional repressor and plays a role in gene silencing (PubMed:<a href="http://www.uniprot.org/citations/10471499"

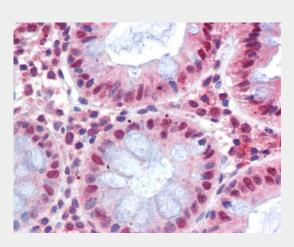
target="\_blank">10471499</a>, PubMed:<a href="http://www.uniprot.org/citations/10947852" target="\_blank">10947852</a>, PubMed:<a href="http://www.uniprot.org/citations/16415179" target="\_blank">16415179</a>). Functions as a scaffold protein, targeting GATAD2A and GATAD2B to chromatin to promote repression (PubMed:<a

href="http://www.uniprot.org/citations/16415179" target="\_blank">16415179</a>). May enhance the activation of some unmethylated cAMP-responsive promoters (PubMed:<a href="http://www.uniprot.org/citations/12665568" target=" blank">12665568</a>).

### **Cellular Location**

Nucleus. Chromosome Note=Nuclear, in discrete foci (PubMed:12183469). Detected at replication foci in late S phase. Localizes to methylated chromatin (PubMed:16428440). Localizes to sites of DNA damage in a manner partially dependent on ZMYND8 (PubMed:27732854)

### **Tissue Location**


Highly expressed in brain, heart, kidney, stomach, testis and placenta.

## MBD2 Antibody (Internal) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- <u>Immunoprecipitation</u>
- Flow Cytomety
- Cell Culture

### MBD2 Antibody (Internal) - Images



Anti-MBD2 antibody IHC of human colon.

## MBD2 Antibody (Internal) - Background

Binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binds hemimethylated DNA as well. Recruits histone deacetylases and DNA methyltransferases. Acts as transcriptional repressor and plays a role in gene silencing. Functions as a scaffold protein, targeting GATAD2A and GATAD2B to chromatin to promote repression. May





enhance the activation of some unmethylated cAMP-responsive promoters.

# MBD2 Antibody (Internal) - References

Hendrich B., et al. Mol. Cell. Biol. 18:6538-6547(1998). Hendrich B., et al. Mamm. Genome 10:906-912(1999). Bhattacharya S.K., et al. Nature 397:579-583(1999). Ng H.-H., et al. Nat. Genet. 23:58-61(1999). Tatematsu K., et al. Genes Cells 5:677-688(2000).