

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V)
Rabbit Polyclonal Antibody
Catalog # ALS13059

Specification

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - Product Information

Application	IHC-P, IHC-F
Primary Accession	P01732
Reactivity	Human
Host	Rabbit
Clonality	Polyclonal
Calculated MW	26kDa KDa
Dilution	IHC-P~~N/A IHC-F~~N/A

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - Additional Information

Gene ID 925

Other Names

T-cell surface glycoprotein CD8 alpha chain, T-lymphocyte differentiation antigen T8/Leu-2, CD8a, CD8A, MAL

Target/Specificity

Human CD8

Reconstitution & Storage

Store at -20°C. Aliquot to avoid freeze/thaw cycles.

Precautions

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) is for research use only and not for use in diagnostic or therapeutic procedures.

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - Protein Information

Name CD8A

Synonyms MAL

Function

Integral membrane glycoprotein that plays an essential role in the immune response and serves multiple functions in responses against both external and internal offenses. In T-cells, functions primarily as a coreceptor for MHC class I molecule:peptide complex. The antigens presented by class I peptides are derived from cytosolic proteins while class II derived from extracellular proteins. Interacts simultaneously with the T-cell receptor (TCR) and the MHC class I proteins presented by antigen presenting cells (APCs). In turn, recruits the Src kinase LCK to the vicinity of the TCR-CD3 complex. LCK then initiates different intracellular signaling pathways by phosphorylating various substrates ultimately leading to lymphokine production, motility, adhesion

and activation of cytotoxic T-lymphocytes (CTLs). This mechanism enables CTLs to recognize and eliminate infected cells and tumor cells. In NK-cells, the presence of CD8A homodimers at the cell surface provides a survival mechanism allowing conjugation and lysis of multiple target cells. CD8A homodimer molecules also promote the survival and differentiation of activated lymphocytes into memory CD8 T-cells.

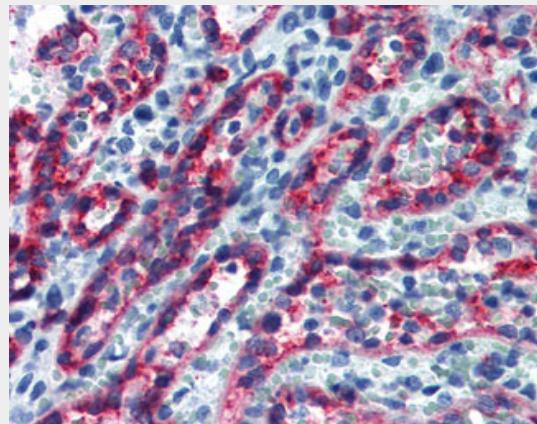
Cellular Location

[Isoform 1]: Cell membrane; Single-pass type I membrane protein Note=CD8A localizes to lipid rafts only when associated with its partner CD8B.

Tissue Location

CD8 on thymus-derived T-cells usually consists of a disulfide-linked alpha/CD8A and a beta/CD8B chain. Less frequently, CD8 can be expressed as a CD8A homodimer. A subset of natural killer cells, memory T-cells, intraepithelial lymphocytes, monocytes and dendritic cells expresses CD8A homodimers. Expressed at the cell surface of plasmacytoid dendritic cells upon herpes simplex virus-1 stimulation

Volume


125 μ l

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - Images

Anti-CD8A antibody IHC of human spleen.

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - Background

Identifies cytotoxic/suppressor T-cells that interact with MHC class I bearing targets. CD8 is thought to play a role in the process of T-cell mediated killing. CD8 alpha chains binds to class I

MHC molecules alpha-3 domains.

CD8A / CD8 Alpha Antibody (C-Terminus, clone P17-V) - References

Littman D.R.,et al.Cell 40:237-246(1985).
Parnes J.R.,et al.Behring Inst. Mitt. 77:48-55(1985).
Sukhatme V.P.,et al.Cell 40:591-597(1985).
Nakayama K.,et al.Immunogenetics 30:393-397(1989).
Norment A.M.,et al.J. Immunol. 142:3312-3319(1989).