RBM8A / Y14 Antibody (clone 3E4) Mouse Monoclonal Antibody Catalog # ALS14300 ## **Specification** ## RBM8A / Y14 Antibody (clone 3E4) - Product Information Application IHC, WB Primary Accession Q9Y5S9 Reactivity Human Host Mouse Clonality Monoclonal Calculated MW 20kDa KDa ## RBM8A / Y14 Antibody (clone 3E4) - Additional Information ## **Gene ID** 9939 #### **Other Names** RNA-binding protein 8A, Binder of OVCA1-1, BOV-1, RNA-binding motif protein 8A, RNA-binding protein Y14, Ribonucleoprotein RBM8A, RBM8A # Target/Specificity Human RBM8A #### **Reconstitution & Storage** Aliquot and store at -20°C or -80°C. Avoid freeze-thaw cycles. ## **Precautions** RBM8A / Y14 Antibody (clone 3E4) is for research use only and not for use in diagnostic or therapeutic procedures. ## RBM8A / Y14 Antibody (clone 3E4) - Protein Information ## Name RBM8A ## Synonyms RBM8 ## **Function** Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator PYM1 leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl- X(S); the function is different from the established EJC assembly. #### **Cellular Location** Nucleus. Nucleus speckle. Cytoplasm Note=Nucleocytoplasmic shuttling protein (PubMed:11030346). Travels to the cytoplasm as part of the exon junction complex (EJC) bound to mRNA Colocalizes with the core EJC, ALYREF/THOC4, NXF1 and UAP56 in the nucleus and nuclear speckles (PubMed:19324961) **Tissue Location** Ubiquitous. ## RBM8A / Y14 Antibody (clone 3E4) - Protocols Provided below are standard protocols that you may find useful for product applications. - Western Blot - Blocking Peptides - Dot Blot - Immunohistochemistry - Immunofluorescence - <u>Immunoprecipitation</u> - Flow Cytomety - Cell Culture ## RBM8A / Y14 Antibody (clone 3E4) - Images Anti-RBM8A antibody IHC of human testis. Western blot of RBM8A expression in transfected 293T cell line by RBM8A monoclonal antibody,... # RBM8A / Y14 Antibody (clone 3E4) - Background Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EIC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP- bound EIC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator WIBG/PYM leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EIC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. ## RBM8A / Y14 Antibody (clone 3E4) - References Conklin D.C., et al. Biochim. Biophys. Acta 1492:465-469(2000). Zhao X.F., et al. Genomics 63:145-148(2000). Salicioni A.M., et al. Genomics 69:54-62(2000). Kataoka N., et al. Mol. Cell 6:673-682(2000). Faurholm B., et al. Genomics 78:15-18(2001).