

RPS6KA3 Antibody(Ascites)

Mouse Monoclonal Antibody (Mab)
Catalog # AM2007a

Specification

RPS6KA3 Antibody(Ascites) - Product Information

Application WB,E
Primary Accession P51812

Other Accession P18654, NP 004577.1

Reactivity
Host
Clonality
Human, Mouse
Mouse
Monoclonal

Isotype IgG1
Calculated MW 83736

RPS6KA3 Antibody(Ascites) - Additional Information

Gene ID 6197

Other Names

Ribosomal protein S6 kinase alpha-3, S6K-alpha-3, 90 kDa ribosomal protein S6 kinase 3, p90-RSK 3, p90RSK3, Insulin-stimulated protein kinase 1, ISPK-1, MAP kinase-activated protein kinase 1b, MAPK-activated protein kinase 1b, MAPKAP kinase 1b, MAPKAPK-1b, Ribosomal S6 kinase 2, RSK-2, pp90RSK2, RPS6KA3, ISPK1, MAPKAPK1B, RSK2

Target/Specificity

Purified His-tagged RPS6KA3 protein(Fragment) was used to produced this monoclonal antibody.

Dilution

WB~~1:500~16000

E~~Use at an assay dependent concentration.

Format

Mouse monoclonal antibody supplied in crude ascites with 0.09% (W/V) sodium azide.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

RPS6KA3 Antibody(Ascites) is for research use only and not for use in diagnostic or therapeutic procedures.

RPS6KA3 Antibody(Ascites) - Protein Information

Name RPS6KA3

Synonyms ISPK1, MAPKAPK1B, RSK2

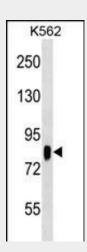
Tel: 858.875.1900 Fax: 858.875.1999

Function Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro- apoptotic function of BAD and DAPK1 (PubMed: 16213824, PubMed: 16223362, PubMed: 17360704, PubMed: 9770464). In fibroblast, is required for EGFstimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes (PubMed: 10436156, PubMed: 9770464). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:8250835). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the preinitiation complex (PubMed: 17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed: 18508509, PubMed: 18813292). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin- sensitive signaling independently of the PI3K/AKT pathway (PubMed: 18722121). Mediates cell survival by phosphorylating the pro- apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed: 16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCI4) (PubMed: 18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (By similarity). In LPS-stimulated dendritic cells, is involved in TLR4- induced macropinocytosis, and in myeloma cells, acts as effector of FGFR3-mediated transformation signaling, after direct phosphorylation at Tyr-529 by FGFR3 (By similarity). Negatively regulates EGF-induced MAPK1/3 phosphorylation via phosphorylation of SOS1 (By similarity). Phosphorylates SOS1 at 'Ser-1134' and 'Ser-1161' that create YWHAB and YWHAE binding sites and which contribute to the negative regulation of MAPK1/3 phosphorylation (By similarity). Phosphorylates EPHA2 at 'Ser- 897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed: 26158630). Acts as a regulator of osteoblast differentiation by mediating phosphorylation of ATF4, thereby promoting ATF4 transactivation activity (By similarity).

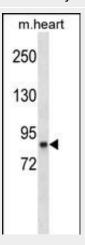
Cellular Location Nucleus. Cytoplasm

Tissue Location

Expressed in many tissues, highest levels in skeletal muscle


RPS6KA3 Antibody(Ascites) - Protocols

Provided below are standard protocols that you may find useful for product applications.


- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

RPS6KA3 Antibody(Ascites) - Images

RPS6KA3 Antibody (Cat. #AM2007a) western blot analysis in K562 cell line lysates (35µg/lane). This demonstrates the RPS6KA3 antibody detected the RPS6KA3 protein (arrow).

RPS6KA3 Antibody (Cat. #AM2007a) western blot analysis in mouse heart tissue lysates (35µg/lane). This demonstrates the RPS6KA3 antibody detected the RPS6KA3 protein (arrow).

RPS6KA3 Antibody(Ascites) - Background

This gene encodes a member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases. This kinase contains 2 non-identical kinase catalytic domains and phosphorylates various substrates, including members of the mitogen-activated kinase (MAPK) signalling pathway. The activity of this protein has been implicated in controlling cell growth and differentiation. Mutations in this gene have been associated with Coffin-Lowry syndrome (CLS).

RPS6KA3 Antibody(Ascites) - References

Peng, C., et al. FASEB J. 24(9):3490-3499(2010) Vigneron, S., et al. Oncogene 29(24):3566-3574(2010) Kang, S., et al. J. Clin. Invest. 120(4):1165-1177(2010) Yerges, L.M., et al. J. Bone Miner. Res. 24(12):2039-2049(2009) Doehn, U., et al. Mol. Cell 35(4):511-522(2009)