

PINK1 Antibody (Ascites)

Unpurified Mouse Monoclonal Antibody (Mab) Catalog # AM6406a

Specification

PINK1 Antibody (Ascites) - Product Information

Application WB, IHC-P,E Primary Accession Q9BXM7

Reactivity Human, Mouse

Host Mouse Clonality Monoclonal

Isotype IgG1
Calculated MW 62769

PINK1 Antibody (Ascites) - Additional Information

Gene ID 65018

Other Names

Serine/threonine-protein kinase PINK1, mitochondrial, BRPK, PTEN-induced putative kinase protein 1, PINK1

Target/Specificity

Recombinant PINK1 protein was used to produced this monoclonal antibody.

Dilution

WB~~1:500~2000 IHC-P~~1:10~50

E~~Use at an assay dependent concentration.

Format

Mouse monoclonal antibody supplied in crude ascites with 0.09% (W/V) sodium azide.

Storage

Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

PINK1 Antibody (Ascites) is for research use only and not for use in diagnostic or therapeutic procedures.

PINK1 Antibody (Ascites) - Protein Information

Name PINK1

Function Serine/threonine-protein kinase which acts as a sensor of mitochondrial damage and protects against mitochondrial dysfunction during cellular stress. It phosphorylates mitochondrial proteins to coordinate mitochondrial quality control mechanisms that remove and replace

dysfunctional mitochondrial components (PubMed: 14607334, PubMed: 15087508, PubMed: 18443288, PubMed: 18957282, PubMed: 19229105, PubMed: 19966284, PubMed:20404107, PubMed:20547144, PubMed:20798600, PubMed:22396657, PubMed: <u>23620051</u>, PubMed: <u>23754282</u>, PubMed: <u>23933751</u>, PubMed: <u>24660806</u>, PubMed:24751536, PubMed:24784582, PubMed:24896179, PubMed:24898855, PubMed: 25527291, PubMed: 32484300). Depending on the severity of mitochondrial damage, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to eliminating severely damaged mitochondria via PINK1-PRKN-dependent mitophagy (PubMed:14607334, PubMed: 15087508, PubMed: 18443288, PubMed: 19966284, PubMed: 20404107, PubMed: 20798600, PubMed: 22396657, PubMed: 23620051, PubMed: 23933751, PubMed: 24898855, PubMed: 32047033, PubMed: 32484300). When cellular stress results in irreversible mitochondrial damage, PINK1 accumulates at the outer mitochondrial membrane (OMM) where it phosphorylates pre-existing polyubiquitin chains at 'Ser-65', recruits PRKN from the cytosol to the OMM and activates PRKN by phosphorylation at 'Ser-65'; activated PRKN then ubiquinates VDAC1 and other OMM proteins to initiate mitophagy (PubMed: 14607334, PubMed: 15087508, PubMed: 19966284, PubMed: 20404107, PubMed: 20798600, PubMed:23754282, PubMed:23933751, PubMed:24660806, PubMed:24751536, PubMed:24784582, PubMed:25474007, PubMed:25527291, PubMed:32047033). The PINK1-PRKN pathway also promotes fission of damaged mitochondria through phosphorylation and PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2 (PubMed: <u>18443288</u>, PubMed: <u>23620051</u>, PubMed: <u>24898855</u>). This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed: 18443288, PubMed: 23620051). Also promotes mitochondrial fission independently of PRKN and ATG7-mediated mitophagy, via the phosphorylation and activation of DNM1L (PubMed: 18443288, PubMed: 32484300). Regulates motility of damaged mitochondria by promoting the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma (PubMed:22396657). Required for ubiquinone reduction by mitochondrial complex I by mediating phosphorylation of complex I subunit NDUFA10 (By similarity). Phosphorylates LETM1, positively regulating its mitochondrial calcium transport activity (PubMed: 29123128).

Cellular Location

Mitochondrion outer membrane; Single-pass membrane protein. Mitochondrion inner membrane {ECO:0000250|UniProtKB:Q99MQ3}; Single-pass membrane protein. Cytoplasm, cytosol. Note=Localizes mostly in mitochondrion and the two smaller proteolytic processed fragments localize mainly in cytosol (PubMed:19229105). Upon mitochondrial membrane depolarization following damage, PINK1 import into the mitochondria is arrested, which induces its accumulation in the outer mitochondrial membrane, where it acquires kinase activity (PubMed:18957282)

Tissue Location

Highly expressed in heart, skeletal muscle and testis, and at lower levels in brain, placenta, liver, kidney, pancreas, prostate, ovary and small intestine. Present in the embryonic testis from an early stage of development

PINK1 Antibody (Ascites) - Protocols

Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- <u>Immunohistochemistry</u>
- Immunofluorescence

- Immunoprecipitation
- Flow Cytomety
- Cell Culture

PINK1 Antibody (Ascites) - Images

Western blot analysis of anti-PINK1 Monoclonal Antibody (AM6406a) in mouse brain tissue lysates. PINK1(arrow) was detected using the ascites Mab. (dilution 1:500)

Western blot analysis of PINK (arrow) using mouse monoclonal PINK antibody(Ascites). 293 cell lysates (2 μ g/lane) either nontransfected (Lane 1) or transiently transfected with the PINK gene (Lane 2) (Origene Technologies) (1:2000)

Image not found: 200806/AM6406a_ihc_1.jpg

Formalin-fixed and paraffin-embedded human hepatocarcinoma tissue reacted with PINK1 Monoclonal Antibody (Cat.#AM6406a), which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

Image not found: 200806/AM6406a_ihc_2.jpg

Formalin-fixed and paraffin-embedded human Brain Cortex tissue reacted with PINK1 Monoclonal Antibody (Cat.#AM6406a), which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry;

clinical relevance has not been evaluated.

PINK1 Antibody (Ascites) - Background

This gene encodes a serine/threonine protein kinase that localizes to mitochondria. It is thought to protect cells from stress-induced mitochondrial dysfunction. Mutations in this gene cause one form of autosomal recessive early-onset Parkinson disease.

PINK1 Antibody (Ascites) - References

Oxidative stress alters the regulatory control of p66Shc and Akt in PINK1 deficient cells. Maj MC, et al. Biochem Biophys Res Commun, 2010 Aug 27. PMID 20637729. Assessing the prevalence of PINK1 genetic variants in South African patients diagnosed with early- and late-onset Parkinson's disease. Keyser RJ, et al. Biochem Biophys Res Commun, 2010 Jul 16. PMID 20558144. Progression of subtle motor signs in PINK1 mutation carriers with mild dopaminergic deficit. Eggers C, et al. Neurology, 2010 Jun 1. PMID 20513816. Structural imaging in the presymptomatic stage of genetically determined parkinsonism. Reetz K, et al. Neurobiol Dis, 2010 Sep. PMID 20483373. Clinical and demographic characteristics of PINK1 mutation carriers--a meta-analysis. Kasten M, et al. Mov Disord, 2010 May 15. PMID 20461815.

PINK1 Antibody (Ascites) - Citations

- Cytosolic PINK1 orchestrates protein translation during proteasomal stress by phosphorylating the translation elongation factor eEF1A1
- PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress.
- Mitochondrially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson's disease.