

# Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody

Affinity purified rabbit polyclonal antibody Catalog # AN1063

### **Specification**

## Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody - Product Information

Application WB
Primary Accession O63099
Reactivity Rat
Host Rabbit
Clonality polyclonal
Calculated MW 100 KDa

## Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody - Additional Information

Gene ID 621349
Gene Name KCNB2

**Other Names** 

Potassium voltage-gated channel subfamily B member 2, CDRK, Voltage-gated potassium channel subunit Kv22, Kcnb2

### Target/Specificity

Synthetic peptide corresponding to amino acid residues specific to the Kv2.2 subunit conjugated to KLH.

#### **Dilution**

WB~~ 1:1000

#### **Format**

Prepared from rabbit serum by affinity purification using a Sulfo-Link® column matrix to which the peptide immunogen was coupled.

#### **Antibody Specificity**

Specific for the ~125k voltage gated potassium channel, Kv 2.2 subunit.

#### **Storage**

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

### **Precautions**

Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

#### Shipping

Blue Ice

### Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody - Protocols



Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- Cell Culture

### Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody - Images



Western blot of rat brain homogenate showing specific immunolabeling of the ~125k voltage-gated potassium channel, Kv2.2 (Control). The immunolabeling is blocked by preadsorption with the peptide used as antigen (Peptide block).

## Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody - Background

Voltage-gated K+ channels are important determinants of neuronal membrane excitability (Pongs, 1999). Moreover, differences in K+ channel expression patterns and densities contribute to the variations in action potential waveforms and repetitive firing patterns evident in different neuronal cell types. The delayed rectifier-type (IK)channels (Kv1.5, Kv2.1, and Kv2.2) are expressed on all neuronal somata and proximal dendrites and are also found in a wide variety of non-neuronal cells types including pancreatic islets, alveolar cells and cardiac myocytes (Hwang et al., 1993; Yan et al., 2004; Michaelevski et al., 2003). Kv2.1 and Kv2.2 form distinct populations of K+ channels and these subunits are thought to be primarily responsible for IK in superior cervical ganglion cells (Blaine and Ribera, 1998; Burger and Ribera, 1996).

### Voltage Gated Potassium Channel, Kv2.2 Subunit Antibody - References

Blaine JT, Ribera AB (1998) Heteromultimeric potassium channels formed by members of the Kv2 subfamily. J Neurosci 18:9585-9593.

Burger C, Ribera AB (1996) Xenopus spinal neurons express Kv2 potassium channel transcripts during embryonic development. J Neurosci 16:1412-1421.

Hwang PM, Fotuhi M, Bredt DS, Cunningham AM, Snyder SH (1993) Contrasting immunohistochemical localizations in rat brain of two novel K+ channels of the Shab subfamily. J Neurosci 13:1569-1576.

Michaelevski I, Chikvashvili D, Tsuk S, Singer-Lahat D, Kang YH, Linial M, Gaisano HY, Fili O, Lotan I







(2003) Direct interaction of target SNAREs with the Kv2.1 channel - Modal regulation of channel activation and inactivation gating. J Biol Chem 278:34320-34330.

Pongs O (1999) Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett 452:31-35.

Yan L, Figueroa DJ, Austin CP, Liu Y, Bugianesi RM, Slaughter RS, Kaczorowski GJ, Kohler MG (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597-607.

D. Guan, T. Tkatch, D. J. Surmeier, W. E. Armstrong, and R. C. Foehring (2007) Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons J. Physiol., Jun 2007; 581: 941 - 960.