

GABA A Receptor a 2 Antibody

Rabbit Polyclonal Antibody Catalog # AN1272

Specification

GABA A Receptor a 2 Antibody - Product Information

Application WB
Primary Accession P23576
Reactivity Mouse
Host Rabbit
Clonality Polyclonal
Calculated MW 51182

GABA A Receptor a 2 Antibody - Additional Information

Gene ID 61856 Gene Name GABRA2

Target/Specificity

Fusion protein from the cytoplasmic loop of the alpha 2 subunit

Dilution

WB~~ 1:1000

Format

Antigen Affinity Purified from Pooled Serum

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

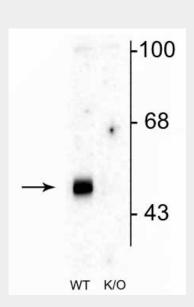
Precautions

GABA A Receptor a 2 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice

GABA A Receptor a 2 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety

• Cell Culture

GABA A Receptor a 2 Antibody - Images

Western blot of mouse brain lysates from wild type (WT) and $\alpha 2$ -knockout (K/O) animals showing specific immunolabeling of the ~ 51 kDa $\alpha 2$ -subunit of the GABAA-R. The labeling was absent from a lysate prepared from $\alpha 2$ -knockout animals.

GABA A Receptor a 2 Antibody - Background

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a CI– channel associated with the GABAA receptor (GABAA-R) subtype. GABAA-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABAA-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunits results in the expression of functional GABAA-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α - subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; Pöltl et al., 2003).