

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody

Rabbit Polyclonal Antibody Catalog # AN1285

Specification

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Product Information

Application WB, ICC
Primary Accession O8R493
Reactivity Mouse
Host Rabbit
Clonality Polyclonal
Calculated MW 55809

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Additional Information

Gene ID 108015
Gene Name Chrnb4

Target/Specificity

Fusion protein from the cytoplasmic loop of the beta 4 subunit of rat nAChR

Dilution

WB~~ 1:1000 ICC~~N/A

Format

Antigen Affinity Purified from Pooled Serum

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

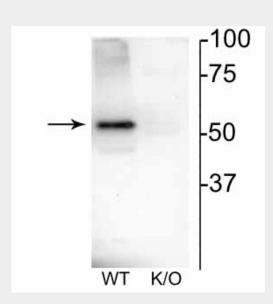
Precautions

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping

Blue Ice

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Protocols


Provided below are standard protocols that you may find useful for product applications.

- Western Blot
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation

- Flow Cytomety
- Cell Culture

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Images

Western blot of mouse habenula lysate showing specific immunolabeling of the $\sim 52~\text{kDa}$ nAChR $\beta 4$ protein.

Nicotinic Acetylcholine Receptor (nAChR) b4 Antibody - Background

Nicotinic acetylcholine receptors (nAChRs) are ionotropic, cholinergic receptors that are divided into 2 types; muscle type and neuronal type. Neuronal nAChRs are pentameric ion channels consisting of 5 identical (homopentamers) or different (heteropentamers) subunits. Heteropentameric neuronal nAChRs mediate fast synaptic transmission in the autonomic nervous system. The predominant hetero-oligomeric nAChR in the CNS contain the subunits $\alpha4\beta2$, whereas $\alpha3\beta4$ prevail in the PNS. However, the expression of these subunits varies not only by region but also during development (Scholze et al 2011). In the brain, $\beta2$ -containing receptors greatly outnumber receptors that contain $\beta4$ (