

Anti-GABAA Receptor α4, Antibody

Our Anti-GABAA Receptor α4, rabbit polyclonal primary antibody from PhosphoSolutions is produced in-Catalog # AN1394

Specification

Anti-GABAA Receptor α4, Antibody - Product Information

VB
<u>28471</u>
labbit
olyclonal
gG
0951

Anti-GABAA Receptor α4, Antibody - Additional Information

Gene ID Other Names

GABA(A) receptor subunit alpha4 antibody, GABA(A) receptor subunit alpha-4 antibody, GABR A4 antibody, GABR α 4 antibodyGabra4 antibody, Gamma aminobutyric acid (GABA) A receptor alph α 4 antibody, Gamma aminobutyric acid A receptor alph α 4 antibody, Gamma aminobutyric acid receptor subunit alph α 4 antibody, Gamma aminobutyric acid receptor subunit alph α 4 antibody, Gamma aminobutyric acid receptor subunit alph α 4 antibody, Gamma aminobutyric acid receptor subunit alph α 4 antibody, Gamma aminobutyric acid receptor subunit alph α 4 antibody, Gamma aminobutyric acid receptor subunit alph α 4 antibody, GBRA4_HUMAN antibody

140675

Target/Specificity

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a Cl– channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunitsresults in the expression of functional GABA-A-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α -subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; Pöltl et al., 2003).

Dilution WB~~1:1000

Format

Antigen Affinity Purified from Pooled Serum

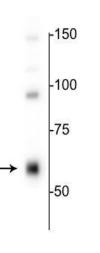
Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-GABAA Receptor α4, Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.


Shipping Blue Ice

Anti-GABAA Receptor α4, Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- Dot Blot
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-GABAA Receptor α4, Antibody - Images

Western blot of rat hippocampal lysate showing specific immunolabeling of the \sim 64 kDa α 4-subunit of the GABAA-R.

Anti-GABAA Receptor α4, Antibody - Background

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a Cl– channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunitsresults in the expression of functional GABA-A-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α -subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; Pöltl et al., 2003).