

Anti-GABAA Receptor α 5 Antibody

Our Anti-GABAA Receptor α 5 rabbit polyclonal primary antibody from PhosphoSolutions is produced in-h
Catalog # AN1395

Specification**Anti-GABAA Receptor α 5 Antibody - Product Information**

Application	WB
Primary Accession	P19969
Host	Rabbit
Clonality	Polyclonal
Isotype	IgG
Calculated MW	52337

Anti-GABAA Receptor α 5 Antibody - Additional Information

Gene ID **29707**

Other Names

GA α 5 antibody, GAA5 antibody, GABA(A) receptor subunit alpha-5 antibody, GABR α 5 antibody, Gabra5 antibody, Gamma aminobutyric acid GABA A receptor alpha α 5 antibody, Gamma aminobutyric acid GABA A receptor alpha α 5 precursor antibody, Gamma aminobutyric acid receptor alpha α 5 subunit precursor GABA A receptor antibody, Gamma-aminobutyric acid receptor subunit alpha-5 antibody, GBRA5_HUMAN antibody, GC138184 antibody

Target/Specificity

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a Cl- channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunits results in the expression of functional GABA-A-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α -subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; Pöltl et al., 2003).

Dilution

WB~~1:1000

Format

Antigen Affinity Purified Pooled Serum

Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-GABAA Receptor α 5 Antibody is for research use only and not for use in diagnostic or

therapeutic procedures.

Shipping
Blue Ice

Anti-GABAA Receptor α 5 Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Anti-GABAA Receptor α 5 Antibody - Images

Western blot of mouse whole brain showing specific immunolabeling of the ~55 kDa α 5-subunit of the GABAA-R.

Anti-GABAA Receptor α 5 Antibody - Background

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system, causing a hyperpolarization of the membrane through the opening of a Cl^- channel associated with the GABA-A receptor (GABA-A-R) subtype. GABA-A-Rs are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are implicated in several diseases including epilepsy, anxiety, depression, and substance abuse. The GABA-A-R is a multimeric subunit complex. To date six α s, four β s and four γ s, plus alternative splicing variants of some of these subunits, have been identified (Olsen and Tobin, 1990; Whiting et al., 1999; Ogris et al., 2004). Injection in oocytes or mammalian cell lines of cRNA coding for α - and β -subunits results in the expression of functional GABA-A-Rs sensitive to GABA. However, coexpression of a γ -subunit is required for benzodiazepine modulation. The various effects of the benzodiazepines in brain may also be mediated via different α -subunits of the receptor (McKernan et al., 2000; Mehta and Ticku, 1998; Ogris et al., 2004; Pöltl et al., 2003).