

Anti-NMDA NR2C Subunit (Ser1096) Antibody

Our Anti-NMDA NR2C Subunit (Ser1096) rabbit polyclonal phosphospecific primary antibody from Phospho
Catalog # AN1494

Specification**Anti-NMDA NR2C Subunit (Ser1096) Antibody - Product Information**

Primary Accession	Q00961
Host	Rabbit
Clonality	Polyclonal
Isotype	IgG
Calculated MW	135271

Anti-NMDA NR2C Subunit (Ser1096) Antibody - Additional Information

Gene ID **24411**

Other Names

GluN2C antibody, Glutamate [NMDA] receptor subunit epsilon-3 antibody, Glutamate Receptor Ionotropic N Methyl D Aspartate 2C antibody, Glutamate receptor ionotropic NMDA 2C antibody, Glutamate receptor ionotropic N methyl D aspartate 2C antibody, Grin2c antibody, Grin 2c antibody, GRIN2C antibody, GRIN 2C antibody, N Methyl D Aspartate Receptor Channel Subunit Epsilon 3 antibody, N Methyl D Aspartate Receptor Subtype 2C antibody, N methyl D aspartate receptor subunit 2C antibody, N-methyl D-aspartate receptor subtype 2C antibody, NMDAR2C antibody, NMDE3_HUMAN antibody, NR2C antibody, OTTHUMP00000041930 antibody

Target/Specificity

The ion channels activated by glutamate that are sensitive to N-methyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer's, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The NR2C subunit of the receptor is thought to influence the NMDAR conductance level (Ebradidze et al., 1996). Phosphorylation of Ser-1096 by PKB on NR2C has been recently demonstrated to regulate NMDA receptor binding to 14-3-3 (Chen & Roche 2009)

Format

Antigen Affinity Purified from Pooled Serum

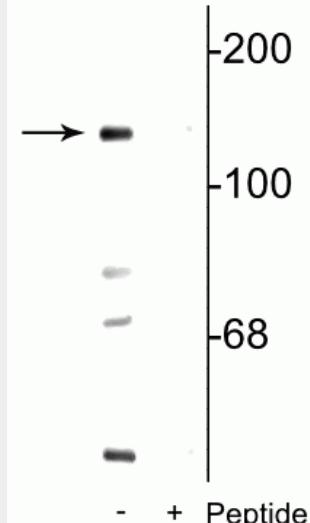
Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti-NMDA NR2C Subunit (Ser1096) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping


Blue Ice

Anti-NMDA NR2C Subunit (Ser1096) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- [Western Blot](#)
- [Blocking Peptides](#)
- [Dot Blot](#)
- [Immunohistochemistry](#)
- [Immunofluorescence](#)
- [Immunoprecipitation](#)
- [Flow Cytometry](#)
- [Cell Culture](#)

Anti-NMDA NR2C Subunit (Ser1096) Antibody - Images

Western blot of mouse brain lysate showing specific immunolabeling of the ~140 kDa NR2C subunit of the NMDA receptor phosphorylated at Ser1096 in the first lane (-). Phosphospecificity is shown in the second lane (+) where immunolabeling is blocked by preadsorption of the phosphopeptide used as the antigen, but not by the corresponding non-phosphopeptide (not shown).

Anti-NMDA NR2C Subunit (Ser1096) Antibody - Background

The ion channels activated by glutamate that are sensitive to N-methyl-Daspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer's, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The NR2C subunit of the receptor is thought to influence the NMDAR conductance level (Ebralidze et al., 1996). Phosphorylation of Ser-1096 by PKB on NR2C has been recently demonstrated to regulate NMDA receptor binding to 14-3-3 (Chen & Roche 2009).