

Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody Catalog # AN1673

Specification

Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody - Product Information

Primary Accession Reactivity Host Clonality Isotype Calculated MW P35221 Bovine, Chicken Rabbit Rabbit Polyclonal IgG 100071

Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody - Additional Information

Gene ID Other Names alphaE-catenin, catenin alpha1, catenin

Target/Specificity

 α -catenins are cadherin interacting proteins with homology to vinculin. Three α -catenin genes have been described including α 1-catenin (α E-Catenin), α 2-catenin (α N-catenin), and α 3-catenin (α T-catenin). α 1-catenin has 81% homology with α 2-catenin and 60% homology with α 3-catenin. These α -catenin isoforms may have similar roles since each binds cadherins. However, their expression patterns are both overlapping and distinct. α 1-catenin was identified in epithelial cells, and is expressed in various cell types. α 2-catenin is enriched in the nervous system, and α 3-catenin is expressed highest in testis and heart. Phosphorylation may regulate the activity of α 1-catenin, since tyrosine phosphorylation of Tyr-148 occurs during intercellular adhesion. This site is dephosphorylated by SHP2, which inhibits α 1-catenin binding to β -catenin and translocation to the plasma membrane. Phosphorylation of α 1-catenin at Tyr-148 may be important for inhibition of cell transformation, and dephosphorylation of this site may be important during SHP2-mediated cell transformation.

1495

Format Antigen Affinity Purified

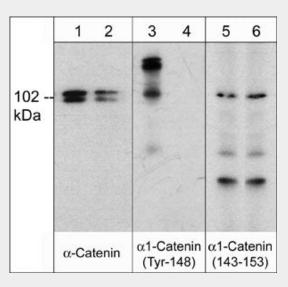
Storage

Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions

Anti- α 1-Catenin (Tyr-148), Phosphospecific Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Shipping Blue Ice


Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.

- <u>Western Blot</u>
- Blocking Peptides
- <u>Dot Blot</u>
- Immunohistochemistry
- Immunofluorescence
- Immunoprecipitation
- Flow Cytomety
- <u>Cell Culture</u>

Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody - Images

Western blot analysis of rat PC12 cells treated with pervanadate (1 mM) for 30 min (lanes 1, 3, & 5) then the blot was treated with alkaline phosphatase (lanes 2, 4, & 6). The blot was probed with anti- α -Catenin monoclonal (lanes 1 & 2), anti- α 1-Catenin (Tyr-148) phospho-specific (lanes 3 & 4), or anti- α 1-Catenin (a.a. 143-153) (lanes 5 & 6).

Anti-α1-Catenin (Tyr-148), Phosphospecific Antibody - Background

 α -catenins are cadherin interacting proteins with homology to vinculin. Three α -catenin genes have been described including α 1-catenin (α E-Catenin), α 2-catenin (α N-catenin), and α 3-catenin (α T-catenin). α 1-catenin has 81% homology with α 2-catenin and 60% homology with α 3-catenin. These α -catenin isoforms may have similar roles since each binds cadherins. However, their expression patterns are both overlapping and distinct. α 1-catenin was identified in epithelial cells, and is expressed in various cell types. α 2-catenin is enriched in the nervous system, and α 3-catenin is expressed highest in testis and heart. Phosphorylation may regulate the activity of α 1-catenin, since tyrosine phosphorylation of Tyr-148 occurs during intercellular adhesion. This site is dephosphorylated by SHP2, which inhibits α 1-catenin binding to β -catenin and translocation to the plasma membrane. Phosphorylation of α 1-catenin at Tyr-148 may be important for inhibition of cell transformation, and dephosphorylation of this site may be important during SHP2-mediated cell transformation.